Welcome to B2Field Developer Documentation

B2Field is a Feld Service Management software developed by SquareGPS company.
Here you can find information about the integration of 3rd party solutions with the
B2Field platform, API, and technical documentation for developers and partners.

Last update: September 16, 2020

https://b2field.com/
https://squaregps.com/

Getting started

How to read this documentation

Coming soon.

Get involved

You can really help to improve this documentation o localizations of B2Field Platform.

If the translation of the user interface into your language is missing or contains errors,
you can make or fix the localization on the CrowdIn platform yourself. Read here how to
doit.

Current documentation may also contain errors or white spots. All of it is available in
the public domain on GitHub and you can independently contribute in its correction or
addition. Read here how to do it.

Useful things

It is convenient to use postman for testing work with API.

Last update: September 10, 2020

../get-involved/
../localizations/localizations/
https://crowdin.com/
../localizations/localizations/
https://github.com/SquareGPS/navixy-api/
../get-involved/
../postman/

Get involved

If you notice an inaccuracy, mistake, typo or want to supplement the information in this
documentation, then you can help us to improve it. All of this documentation is
available in the public domain on GitHub.

There are several ways:

1. Creating an issue with a detailed description of the problem.

2. Editing a single page in a browser.

3. Manually creating a fork and doing multiply commits before creating a pull request.
4. Installing and editing documentation locally on yours PC.

In each of these cases, a GitHub account required. If you don't want to register on
GitHub, you can just contact us with any convenient way.

Easy way

On each page in the upper right corner of the text top there is a link with a picture of a
pencil :material-pencil:. After clicking on this link, you will be asked to create a fork of
the repository (if you have not done this before).

You need to fork this repository to propose changes.
Sorry, you're not able to edit this repository directly— you need to fork it and propose your changes from there instead

P Fork this repository

earm Mmaore hout forke
L€a ore about TOrks

Creating a fork done with one green button. After that, the edit form with page source
code will open.

. For correct edit of page, please read the introduction into Mkdocs.

After editing the page, you must fill out a description of what you have done.

https://github.com/SquareGPS/navixy-api/
https://github.com/SquareGPS/navixy-api/issues/new
../contacts/

Propose changes

Update index.md

Add an optional extended description...

Propose changes Cancel

Submitting a change will write it to a new branch in your fork, so you can send a pull
request. We will review your pull request and accept it in the main branch.

Thus, this method is only suitable for simple edits on one page. There is another way to
create pull requests to fix multiple pages at once.

Second way

This method allows you to make several edits on different pages before proposing them
in a pull request.

1. Create a fork of the repository if it has not been created yet. (Just click the "Fork"
button in the upper right corner.)

Go to the created fork and find the file you are interested in.

Open the file and click the edit button.

2.
3.
4. Make edits and commit with a clear description of the changes.
5. Edit other files of interest to you in the same way.

6.

Go to the start page of the fork and click on the "Pull request” button.

After review and pull request will be merged, and you can drop a fork.

Hard way

This method involves installing the Git, IDE, Python and Material for MkDocs on yours
PC.

1. Install Python 3.

2. Install Git client.

https://github.com/SquareGPS/navixy-api/
https://squidfunk.github.io/mkdocs-material
https://www.python.org/downloads/
https://git-scm.com/downloads

3. Install an IDE, for example IntelliJ IDEA (Community edition would be enough).

4. Create a fork of the repository and cloning it to local project. In IDEA: File -> New -

> Project from version control;

5. Install mkdocs-material and other dependencies. In console:

cd /path/to/project

mkdir venv

python -m venv ./venv

pip3 install -r requirements.txt

6. Start the documentation server locally. In console:

cd /path/to/project

source venv/bin/activate

Windows: \venv\Scripts\activate.bat
mkdocs serve --dirtyreload

7. To check that the server has started, open in a browser: http://localhost:8000
8. Create a local git branch in project.
9. Make changes in documentation and test it in browser. Read the introduction.

10. Commit and push changes. Please, use English in commit message.

11. Create a Pull Request (PR) on Github from your fork. Please, use English in PR
description.

12. After the PR has been reviewed and merged to upstream you can remove branch
and rebase a fork to the upstream.

Introduction into Mkdocs

This documentation built on mkdocs engine and mkdocs-material theme. Firstly, read
how to layout and write your Markdown source files for an overview of how to write
docs.

Menu

The menu formed using the plugin awesome-pages automatically. To set the desired
page order in the menu, use the file .pages.yml in directory. For example:

title: Backend API
nav:
- getting-started.md
- how-to
- resources
- websocket

https://www.jetbrains.com/idea/
https://github.com/SquareGPS/navixy-api/
https://squidfunk.github.io/mkdocs-material
http://localhost:8000
https://mkdocs.org
https://squidfunk.github.io/mkdocs-material
https://mkdocs.org/user-guide/writing-your-docs
https://github.com/lukasgeiter/mkdocs-awesome-pages-plugin

title sets the name for menu section. nav: sets the sub-items order.

Meta information

Each page must have meta information section at the beginning. Required fields: title
and description. For example:

title: Get involved
description: Get involved into improving documentation and
translations of the B2Field Platform

Title will be displayed in menu and in browser title.

Headers

The information on each page should be structured. On pages of the same type, the
structure should be uniform.

Example

APl resource page structure:

Resource name

Path: " /path/to/resource\ .
Resource description.
Resource specific actions:

* [/path/to/resource/method1] (#method1)
* [/path/to/resource/method2] (#method2)

method1

Method description.

Parameters

| name | description | type | restrictions |
L | g] seee |
|param1 | description | int | [1..1860], not null |
Examples

=== "CURL"

" “shell

curl -X POST 'https://api.navixy.com/v2/fsm/resource/
sub_resource/action' \
-H 'Content-Type: application/json' \
-d '{"param1": "valuel", "param2": "value2", "hash":
"abaa75587e5c59¢c32d347da4385065fc3" }"

=== "HTTP GET"

https://api.navixy.com/v2/fsm/resource/sub_resource/action?
paraml=valuel&hash=a6aa75587e5c59c32d347da438505fc3
Response
" json

{ "success": true }

'l 'warning "Please note"

If the response or structure has comments it is necessary to
write these comments separately in the form of a list below.
Errors

Special error codes.

method2

For real example see /user and source.

Last update: December 17, 2020

../../backend-api/resources/commons/user/
https://raw.githubusercontent.com/SquareGPS/navixy-api/master/docs/backend-api/resources/commons/user/index.md

Contacts

If you have questions, write to us in any way convenient for you.
You can call us or send email: b2field.com/contact.
Follow us in the social networks:

* GitHub
* https://www.facebook.com/B2Field/

* Instagram

Last update: September 10, 2020

https://b2field.com/contacts/
https://github.com/SquareGPS/navixy-api/
https://www.facebook.com/B2Field/
https://instagram.com/squaregps

Languages

B2Field already supports many languages and provides an easy way to add a new
language:

Arabic
Croatian
Dutch
English
French
Georgian
German
Greek
Indonesian
Korean
Mongolian
Polish
Portuguese
Portuguese (Brazil)
Romanian
Russian
Sinhala
Spanish
Tamil

Thai
Turkish
Ukrainian
and others...

In all B2Field products both left-to-right and right-to-left languages are supported. The
following B2Field projects are maintained currently:

+ Desktop web interface

* Mobile web interface

+ Java backend and API

+ Tracker mobile app for iOS /Android

+ Viewer mobile app for iOS / Android

Become a contributor and help us to translate B2Field products to a new language or
improve the existing language packs.

Last update: September 10, 2020

../contributing/
../contributing/
../contributing/

Translate B2Field

Localizing B2Field products to the language of your choice is simple and handy. Add a
new language or update an existing translation in a few easy steps. Then you can
translate Navixy to your language.

All translations are done through the crowdin online translation service, developed
specifically for team-based translation projects.

Getting started

First of all you should contact your manager, to obtain Crowdin account associated with
Navixy Crowdin project.

There are two ways to localize navixy platform:

« Crowdin In-context translation

* Translate via Crowdin Ul

Crowdin In-context translation (only Web Ul)

Crowdin In-context translation is the most handy way to translate Navixy Web Ul.

To launch Crowdin In-context service you should use special link:
https://demo.navixy.com/?locale=ach#/login

You should see crowdin authorization dialog.

http://crowdin.com

After authorization standard Navixy Ul will appear in a special translation mode. Click
on a little icon near each text item

:@Ji sommes-nous!

opens translation dialog

4 Translating to French

SOURCE STRING [HIDDEN] [DUPLICATE] &

Demo login

¥ CONTEXT

Connexion démo

~:) T cb

FRENCH TRANSLATIONS

Connexion démo
yassirmojahid 3 years ago

8 TM AND MT SUGGESTIONS

e (& Connexion démo
== Navixy's TM, 100% match

OTHER LANGUAGES

Translate via Crowdin Ul

Crowdin Ul is a most powerfull way to work with translations in Navixy and the only way
if you want to translate not Backend and Mobile apps.

Translations in crowdin organized into several directories:

Transiate Al (8] - O

1. Common Server properties, APl server properties, Tracking server properties, SMS

server properties - translation strings for backend (Mainly for Reports, SMS and

Email notifications)

2. Future Web Ul, Legacy Web Ul - translation strings for Navixy Web Ul.

3. android-client, android-tracker, navixy-retracker-ios, navixy-viewer-ios - translation

strings for mobile apps.

Each entry in each directory contains strings for translation, displayed in translation

screen

= FRENCH s LEGACY WEB UI

§ under developement

& please wak, command is applying

& el taniff plan. Incontect billng is posaile. P

& The feature is unavalable on your plan

. Show

please walt, command is applying

CONTEXT v (OF

Merci de patienter, 13 COmMmande o3t en cour's denéoution

© 0 <
QA 1550ES)

First letters in the source text and tansiation have a different case.
FRENCH TRANSLATIONS +

Merci de patienter, & ©5t en cours

Karien Garouche (kgarcuche) 4 y

Merci de patienter. L 052 00 Cours

patroling 3 yoars 55

n-» SAVE
)

oo e %@
a B L)

If you have some problems with translation feel free to ask questions in comments.

Translations delivery

Usally it takes about a week to deploy translations to production environment.

In case of standalone installations and mobile apps this time is linked to standalone/
mobile app release schedule.

If you translate Navixy to the new language, after translation you should notify your
manager that your translation is complete. Your manager will ask development team to
add new language to the platform. In the other case translations of the existing
language will be delivered to production automatically.

Last update: December 17, 2020

Postman

There are many tools that could be used to work with API requests. From simple input
to browser's address line or cmd tool to more complex software. One of our personal
favorites is Postman application. Postman is a collaboration platform for API
development. It can be used for a variety of purposes ranging from simple request
testing to creating and maintaining your own APIs for your own software.

For our purposes we will only review their API client.

Your first request

Postman API client allows you to easily send various APl requests and helps you fill out
parameters without worrying that you will miss a quote or bracket. This can be
especially handy when working with large requests.

1. Select a request method:

W [R wmpen [Bulder CARO) s O B £ 9

o m e
ey Voo Conirptoen .

Each API request uses an HTTP method. The most common methods for B2Field
APl are GET and POST. GET methods retrieve data from an APIl. POST sends new
data to an API.

https://www.postman.com/

2. Enter base request URL with the resource and sub-resource. In our example we will
use user/auth and tracker/list requests. Base request URLs are:

* For EU server - https://api.eu.navixy.com/v2/fsm/

* For US server - https://api.us.navixy.com/v2/fsm/

3. Click on the Params button, and you will see a table for key and value input:

MW [rener mpon [Bulder RO s O & £ @

—em
History
— GEY ot e e @ Sevs
N Po—— .

We will only ever need to fill 2 fields - Key (parameter name from documentation)
and value. For user/auth request, we have 2 keys that should be transmitted - login
and password.

You can see that once we fill out the parameter name - it is automatically added to
the request line.

MW [Runer mpen [Bulder CAROS s O & £ @

Similarly, with values and additional parameters:

W [Rener g [Bulder " @ s O B £ @

MW ([ruser wmpen [Bu'lder RO son O B £ @O

- e
K y
ce = ‘ placom P— “
Koy e evis g lian
;

4. Press send, and you will see the reply, already split and highlighted for easier

reading
MW [mener mpon [Bu lder LARO s O & £ @O
No Erv e
=
k Y
T - [
noy e ecrpton
g »
9
TRAATI TITINONSDIINT 08I0 QT %A,
SerCess™ ! tree

In this case, we have received a hash that should be copied and user for future
requests.

Example: tracker/list request

oy Vehu Comrgeas

Working with parameters

If your request has multiple parameters listed - you can easily enable and disable,
preventing errors:

NeW | [Rusner impor [} Bullder

History

Key Value Description

Body 9)]
Pretty =
"
T T130865790338",
navixytracker_xgps®,
1 58335,
16 1§-03-17",

2020-01-22

History of requests

On the left side of postman application a history of your requests is stored. If you made
errors or oo many changes and just want to go back to the old version or re-execute the
request made in the past - a simple double-click will open a request in a new tab:

NeWw [[) Rusner impor [} Builder

No
® mupUiaginmiycomy @ .
History
GET hetp://apl.navixy.com/apiv2/tracker/listThash=f75006502207e04e80800460 72064578 Jabels={Test") Params m Save
v Today Xey Nale Description

ha Me Q4 4

Isbels

Aushorization

3
Body i
Prexty =

Examples in documentation

You could see that our APl documentation has both structure of the request and
examples. You can copy them and paste in postman. In this case all parameters will be
automatically separated to strings for more convenient editing

Untitled Request

GET v http(s)//api.navixy.com/api-v2/apn_settings/read?hash=your_hash&phone=phone_numt “ Save v

Params @ Authorization Headers (7) Body Pre-.request Script Tests Settings
Query Params
KEY VALUE DESCRIPTION
hash your_hash
phone phone_number
T 2000 1 230ms ¢ 6488 Save Response v

Body Cookies Headers (9) Test Results

How to install

To get the latest version of the Postman app, visit the download page and click
"Download" for your platform.

Last update: December 17, 2020

https://postman.com

B2Field Backend API

General

Each API resource semantically corresponds to some entity, for example: geofences,
rules, objects, etc. The API calls for CRUD and other operations with these entities have
similar names regardless the resource used: list, read, create, delete.

Standard workflow (example)

Let's describe standard workflow for API developer using very simple and most
common example — requesting the track points data:
1. Determine URL to API calls.

2. Authorize with user/auth. This APl method will return the hash you should use for

all your next API calls.
3. Get objects lists with tracker/list.
4. Get track lists with track/list.

5. Get the track itself: track/read.

In other words, to start working with API, the developers should have API call
description (as provided herein), and know user login and password.

APl base URL

Depending on the physical location of the platform it will be:

* https://api.eu.navixy.com/v2/fsm for European B2Field ServerMate platform.
* https://api.us.navixy.com/v2/fsm for American B2Field ServerMate platform.

* https://api.your_domain/fsm for the self-hosted (On-Premise) installations.

For example, to make user/auth API call on the European B2Field ServerMate, you
should use the URL:

https://api.eu.navixy.com/v2/fsm/user/auth

../how-to/get-session-hash/
../how-to/get-tracker-list/
../how-to/get-tracker-list/

API calls format

Notation used in this doc:
/resource/sub_resource/action(parameter1,parameter2, [parameter3])

Which means that you should use the following URL:
[api_base_url]/resource/sub_resource/action

with named parameters:

* parameter
* parameter2

+ parameter3 is optional
Parameters can be passed in the:

* HTTP POST application/json with JSON content, recommended

* HTTP POST application/x-www-form-urlencoded with parameters in the request
body

* HTTP GET - not recommended, should be used only for idempotent requests with

small parameters size

HTTP POST application/json

$ curl -X POST '[api_base_url]/resource/sub_resource/action’ \
-H 'Content-Type: application/json' \
-d "{"param1": "valuel", "hash":
"abaa75587e5c59¢c32d347da438505fc3"}"

HTTP POST application/x-www-form-urlencoded

$ curl -X POST '[api_base_url]/resource/sub_resource/action' \
-d 'parami=value' \
-d 'hash=a6aa75587e5c59c32d347da438505fc3"

HTTP GET

$ curl '[api_base_url]/resource/sub_resource/action?
paraml=valuel&hash=a6aa75587e5c59c32d347da438505fc3"

. Hash is required for most API calls to identify user.

Typical actions:

« list — list all resource entities with IDs and minimum additional info

../how-to/get-session-hash/

* read - read one entity by ID
* update — update one entity by ID

+ delete — delete one entity by ID

Request and response format

To make API call, for example, resource/action send POST request to
[api_base_url]/resource/action/

The response will be given with application/json content type, even errors (see error
handling). Response fields and object structure is specific to API call.

Ensuring compatibility

Our API evolves over time, and new methods and JSON object fields are being added.
We are doing our best to ensure our APl remains backwards compatible with legacy API
clients. However, you must ensure that any JSON object fields which are not supported
by your app are ignored, and that in event if new JSON fields are returned, your
application will not break. Also, sometimes, to reduce response size, JSON fields which
are NULL are omitted. Your JSON parser should handle missing JSON fields as if they
were NULL.

. For example

To read user's tracker list use [api_base_url]/tracker/list/?
hash=abaa75587e5c59c32d347da438505fc3 and get response:

{
"success": true,
"list": [
{
"id": 560,

"label": "GV55",
"group_id": 12,
"avatar_file_name": "super-avatar.jpg",
"source": {
"id": 2915,
"model": "gv55lite",
"blocked": false,
"tariff_id": 2,
"phone”: "111",
"status_listing_id": 333,
"creation_date": "2014-02-02",
"device_id": "888888888888888"
}
"tag_bindings": [
{
"tag_id": 1,
"ordinal”: 1
}
I,

"clone": true

"id": 2799,
"label": "2799",
"group_id": 0,
"source": {
"id": 2692,
"model”: "m7",
"blocked": true,
"tariff_id": 5,
"phone": null,
"status_listing_id": null,
"creation_date": "2006-02-10",
"device_id": "333333333333333"
bo
"tag_bindings": [
{
"tag_id": 9,
"ordinal”: 3

../how-to/get-tracker-list/

Or error if hash is wrong:

"success": false,
"status": {
"code": 4,
"description”: "User not found or session ended"

}
}

HTTP codes

If success is true, HTTP code is always 260 0K (unless otherwise stated). If there is
an error, HTTP code is 400 BAD REQUEST (may vary depending on error type) (see

error).

Authorization and access levels

Unless otherwise noted, every API call requires a valid user session hash (A String
containing 32 hexademical characters) that can be passed (in order of lookup priority):

1. As hash parameter of the request body (root-level property for application/

json).
2. As hash parameter of the HTTP query string.

3. As value of the HTTP header Authorization in the following form:
Authorization: NVX SessionHashValue

Following is pseudogrammar that illustrates the construction of the Authorization
request header:

Authorization = "NVX" + " " + SessionHashValue ;
SessionHashValue = 32 hexademical characters;

Session hash can be obtained via user/auth API call:

cURL

$ curl -X POST '[api_base_url]/user/auth' \
-H 'Content-Type: application/json' \
-d '"{"login": "demo", "password": "demo"}'

GET

This method is not recommended. Just for example:

[api_base_url]/user/auth?login=demo&password=demo

Data types

bool, boolean - logical type: true of false.

byte - signed 8 bits integer inrange [-128 .. 128].

short - signed 16 bits integer in range [-32,768 .. 32,767].

int, integer - signed 32 bits integer in range [-2,147,483,648
2,147,483,647] .

long - signed 64 bits integer in range [-9,223,372,036,854,775,808
9,223,372,036,854,775,807] .

float - signed 32 bits float number
[3.40282347 x 10438, 1.40239846 x 10°-45] .

double - signed 64 bits float number [1.7976931348623157 x 104308,
4.9406564584124654 x 10~-324] .

string - string literals.

enum - string literals from predefined set.

date/time - is a string containing date/time in yyyy-MM-dd HH:mm:ss format (in
user's timezone).

+ local_time — is a string containing local time in HH:mm:ss format.

+ location — is json object contains geographical coordinates, e.g.
{"lat": 56.827001, "lng": 60.594296}

+ locale - stringin format language\[_country\], where language is ISO 639
alpha-2 language code, and country is ISO 3166 alpha-2 country code, e.g. en_US
or ru. Userinterface support only language codes: ru, en, es, ar, de, pt, ro

and uk .

https://www.loc.gov/standards/iso639-2/php/English_list.php
https://www.loc.gov/standards/iso639-2/php/English_list.php
https://en.wikipedia.org/wiki/ISO_3166-2#Current_codes

Constants

+ maxHistoryLimit = 1000 — maximum count of history entries from listing requests

+ maxReportTimeSpan = 120 days — maximum interval in for most requests

Error handling

If an error occurs, API returns special error response. You can also detect error by
checking HTTP response code. If it's not 260 0K, you should parse and handle
response body as an error response. In the event of error occurs, the response will be in
the following format:

{
"success": false,
"status": {
"code": 1,
"description”: "Database error"

}
}

where code is one on the error codes.
Error codes

Default HTTP code is 400. Common error codes (should be handled for all API calls) are
1-100 and resource or action specific errors are 101-300.

code description

1 Database error 500
2 Service Auth error 403
3 Wrong user hash

4 User not found or session ended

5 Wrong request format

6 Unexpected error 500

7 Invalid parameters

../resources/commons/history/history_tracker/

description

8 Queue service error, try again later 503
9 Too large request 412
11 Access denied 403
12 Dealer not found

13 Operation not permitted 403
14 Database unavailable 503
15 Too many requests (rate limit exceeded) 429
101 In demo mode this function is disabled 403
102 Wrong login or password

103 User not activated

111 Wrong handler

112 Wrong method

201 Not found in database

202 Too many points in zone

203 Delete entity associated with

204 Entity not found 404
206 Login already in use

207 Invalid captcha

208 Device blocked 403

209

210

211

212

213

214

215

217

218

219

220

221

222

223

224

225

226

227

228

description

Failed sending email

Geocoding failed

Requested time span is too big

Requested limit is too big

Cannot perform action: the device is offline

Requested operation or parameters are not supported by the
device

External service error

List contains nonexistent entities

Malformed external service parameters

Not allowed for clones of the device 403

Unknown device model

Device limit exceeded 403

Plugin not found

Phone number already in use

Device ID already in use

Not allowed for this legal type 403

Wrong ICCID

Wrong activation code

Not supported by sensor

description

229 Requested data is not ready yet 404
230 Not supported for this entity type

231 Entity type mismatch 409
232 Input already in use

233 No data file

234 Invalid data format

235 Missing calibration data

236 Feature unavailable due to tariff restrictions 402
237 Invalid tariff

238 Changing tariff is not allowed 403
239 New tariff doesn't exist 404
240 Not allowed to change tariff too frequently 403
241 Cannot change phone to bundled sim. Contact tech support.

242 There were errors during content validation

243 Device already connected.

244 Duplicate entity label.

245 New password must be different

246 Invalid user ID

247 Entity already exists 409

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

description

Wrong password

Operation available for clones only 403
Not allowed for deleted devices 403
Insufficient funds 403

Device already corrupted

Device has clones

Cannot save file 500

Invalid task state

Location already actual

Registration forbidden 403

Bundle not found 404

Payments count not comply with summary

Payments sum not comply with summary

Entity has external links 403

Entries list is missing some entries or contains nonexistent
entries

No change needed, old and new values are the same

Timeout not reached 403

Already done 403

Cannot perform action for the device in current status 403

267

268

269

270

271

description

Too many entities

Over quota

Invalid file state

Too many sensors of same type already exist

File over max size

Last update: December 17, 2020

402

413

How to

Working with APl might seem hard at first, but the goal of our documentation is to
assist you in this process and make it more approachable.

Our How to's section has step by step examples of working with B2Field API.

From initial step of obtaining a session key to more complicated operations like
retrieving a list of devices, tracks or creating reports. Using API and scripting you will be
able to develop applications that not only satisfy your customer's needs but also help
you make your business more profitable.

+ How to get session hash

+ How to get tracker list

* How to get track points

* How to obtain report's information

Last update: December 17, 2020

../get-session-hash/
../get-tracker-list/
../get-track-points/
../how-to-obtain-information-from-report/

Obtaining session hash

"Hash" or "Session key" is a randomly generated string that is used to verify and
authenticate actions. Nearly all API calls require a session key to operate.

To get hash use the user/auth call with credentials of a user:

https://api.navixy.com/v2/fsm/user/auth?
login=user_login&password=user_password

The response will be like this:
{ "success": true, "hash": "882fb333405d006df0d5a3f410115e92" }

Where resulting hash is 882fb333405d006df08d5a3f410115e92 (just an example, you will
get a different hex string)

Received hash should be saved and used in API calls. For security reasons, hash has a
lifetime of 30 days and will expire in certain situations:

« After 30 days.
+ User has changed their password.
+ User logged out and ended the session.

« User was deleted.

Correct work with hash is crucial. There is no need to receive a new hash before each
request, instead, your hash should be stored and reused. To prevent expiration, in most
cases you just need to prolong the session.

To prolong the session, use the following API call:
https://api.navixy.com/v2/fsm/user/session/renew?hash=you_hash
You can disable the current hash with the following call:

https://api.navixy.com/v2/fsm/user/logout?hash=your_hash

Using hash

You must pass session hash with most API calls along other parameters required to
make the call.

For example, if you want to make a call with the single parameter id equal to 1, and
you obtained hash equal to 882fb333405d006dfed5a3f410115e92 (fake hash, just for
example) you must pass the following parameters in HTTP request:
id=1&hash=882fb333405d006df0d5a3f410115e92 (exanuﬂeisforF%)ST/x—www—form—
urlencoded or GET requests).

Otherwise, you will get an error response:

{
"success": false,
"status": {
"code": 3,
"description”: "Wrong user hash"
}
}

Whenever you see such response, it means that you did not pass hash value properly.

If session expired or was logged out, you will receive the following response:

{
"success": false,
"status": {
"code": 4,
"description”: "User not found or session ended"
}
}

It means that you need to obtain new user hash through user/auth APl action.

Last update: October 1, 2020

How to get tracker list

Now we have a hash — let's start with essential basics.

B2Field has tracking device as a main unit, so most requests would require you to
specify one or several tracker ids. You can receive a list of all trackers in user's account
with tracker/list APl request:
cURL
curl -X POST 'https://api.navixy.com/v2/fsm/tracker/list"' \
-H '"Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3"}"
HTTP GET
https://api.navixy.com/v2/fsm/tracker/list?
hash=a6aa75587e5c59c32d347da438505fc3

It will return to you

{
"success": true,
"list": [{
"id": 123456,

"label": "tracker label",

"clone": false,

"group_id": 167,

"avatar_file_name" : "file name",

"source": {
"id": 234567,
"device_id": 9999999988888,
"model"”: "telfmb920",
"blocked": false,
“tariff_id": 345678,
"status_listing_id": null,
"creation_date": "2011-069-21",
"tariff_end_date": "2016-03-24",
"phone" : "+71234567890"

}

"tag_bindings": [{

"tag_id": 456789,

"ordinal": 4

}]
* id -int. Tracker id aka object_id.
+ label - string. Tracker label.

« clone - boolean. True if this tracker is clone.

* group_id -int. Tracker group id, 0 when no group.

../get-session-hash/

* avatar_file_name - string. Optional. Passed only if present.
* source - object.
+ id -int. Source id.
« device_id - string. Device id aka source_imei.
* model - string. Tracker model name from "models" table.
* blocked - boolean. True if tracker blocked due to tariff end.
« tariff_id -int. Anid of tracker tariff from "main_tariffs" table.

« status_listing_id -int. Anid of the status listing associated with this tracker,
or null.

* creation_date - date/time. Date when the tracker registered.
* tariff_end_date - date/time. Date of next tariff prolongation, or null.

* phone - string. Phone of the device. Can be null or empty if device has no GSM
module or uses bundled SIM which number hidden from the user.

* tag_binding - object. List of attached tags. Appears only for "tracker/list" call.
* tag_id -int. Anid of tag. Must be unique for a tracker.

* ordinal -int. Number that can be used as ordinal or kind of tag. Must be
unique for a tracker. Max value is 5.

If account has a large amount of trackers, and you only need certain ones, you can add
an optional filter parameter to the request that will only return matching records.

This parameter has following constraints: * labels array size: minimum 1, maximum
1024 * no null items * no duplicate items * item length: minimum 1, maximum 60

To get a list of trackers with labels matching the filter use this API call:

curl -X POST 'https://api.navixy.com/v2/fsm/tracker/list"' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "labels":
["aa”, "b"]}’

Last update: December 17, 2020

How to get track points for trips

Sometimes necessary to get all points of a trip with more info about the device's
moves. How to get them?

Firstly you need to get hash.

Once you get the hash, you need to get your tracker_id. The platform must know points
for what device must be in reply.

Now you can get all points for the interesting period using /track/read API call.
Parameters that necessary for this call:

* tracker_id - we got them in tracker/list call. Use only one tracker_id per call. It
should be an integer.

+ from - a string containing start date/time in yyyy-MM-dd HH:mm:ss format (in
user's timezone).

* to - a string containing end date/time in yyyy-MM-dd HH:mm:ss format (in user's
timezone).

Optional parameters:

* track_id - we can get them using track/list API call. If specified, only points
belonging to the specified track will be returned. If not, any valid track points
between from and to will be returned. All requested track ids must be unique and
not null.

* include_gsm_lbs — boolean. It may contain true or false.If false &&
track_id not specified, GSM LBS points will be filtered out. It is true by default.

* point_limit - int. If it specified, the returned track would be simplified to contain
this number of points. Min=2, Max=3000.

« filter — boolean. If true, the returned track will be filtered, applicable only for
LBS tracks. It is false by default.

The platform will reply:

"success": true,
"limit_exceeded": true,
"list": [
{
"lat": 53.445181,
"lng": -2.276432,
"alt": 10,
"satellites": 8,

../get-session-hash/
../get-tracker-list/

"get_time": "2011-06-18 ©3:39:44",

"address": "4B Albany Road, Manchester, Great Britain",
"heading": 298,
"speed": 780,

"precision": 100,
"gsm_lbs": true,
"parking": true

+ limit_exceeded - boolean. true if the requested time period exceeds limit
specified in a tracker's tariff.

+ lat - float. Latitude.

* 1ng - float. Longitude.

+ alt -int. Altitude in meters.

+ satellites -int. Number of satellites used in fix for this point.

+ get_time - string date/time. GPS timestamp of the point, in user's timezone.

* address - string. Point address. Will be " if no address recorded.

+ heading - int. Bearing in degrees (0..360).

* speed -int. Speed in km/h.

* precision - optional int. Precision in meters.

« gsm_lbs - optional boolean. true if location detected by GSM LBS.
* parking - optional boolean. true if point does not belong to track.

You can also download a KML file. You could use this file with map services. It is useful
if you need to see all points on the map:

curl -X POST 'https://api.navixy.com/v2/fsm/track/download' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "tracker_id":
"123456", "from": "2020-09-23 ©3:24:00", "to": "2020-09-23
06:24:00", "format": "kml", "split": "false"}'

All parameters are identical with track/read with the except of two new optional
parameters:

« format - string. File format, "kml" or "kmz". Default is "kml".

« split — boolean. If true, split tracks by folders with start/end placemarks and
track line. Default false.

Last update: October 1, 2020

How to obtain report's information

Reports consider information that can be used to manage your fleet successfully.
Sometimes it is necessary to get a report's information that can be used in programs or
specific reports in needs for business. For example, necessary information about trips +
fuel consumption, drains and refills. Follow the next steps, to obtain report's
information.

Generate report

To receive data for processing, it must be generated. This can be done using a call
report/tracker/generate.

Parameters that necessary for this call:
« from - A string containing date/time in yyyy-MM-dd HH:mm:ss format (in user's

timezone). Data in a report will be from that moment.

+ to - A string containing date/time in yyyy-MM-dd HH:mm:ss format (in user's
timezone). Specified date must be after "from" date. Data in a report will be till
specified moment.

« title - Report title. Default title will be used if null.
« trackers - List of trackers'ids to be included in report (if report is by trackers).

- employees - List of employees'ids to be included in report (if report is by
employees).

+ time_filter - An object which contains everyday time and weekday limits for
processed data, e.g. {"to":"18:00", "from":"12:00", "weekdays":
[1,2,3,4,5]}.

* plugin - A plugin object. The list of all report plugins.

APl request:

../get-tracker-list/
../../resources/commons/plugin/report_plugins/

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/
generate' \

-H 'Content-Type: application/json' \

-d '"{"hash": "abaa75587e5c59c32d347da438505fc3", "title":
“Trip report", "trackers": [669673], "from": "2026-10-85
00:00:00", "to": "2020-10-06 23:59:59", "time_filter": {"from":
"00:00:00", "to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]},
"plugin": {"hide_empty_tabs": true, "plugin_id": 4,
"show_seconds": false, "include_summary_sheet_only": false,
"split": true, "show_idle_duration": false, "show_coordinates":
false, "filter": true, "group_by_driver": false}}'

It will respond with generated report_id.

"success": true,
"id": 222

Retrieve report

To obtain all generated analytic data from the report in JSON format use report/tracker/

retrieve.

Use the report_id from the previous call response.
APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/

retrieve' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":

"1234567"}"'
HTTP GET

https://api.navixy.com/v2/fsm/report/tracker/retrieve?
hash=a6aa75587e5c59c32d347da438505fc3&report_id=1234567

You will get the report in a JSON format:

. Example

{
"success": true,
"report": {
"created": "2020-10-066 16:01:46",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [
1,
2
3,
4,
5,
6,
7
]
Jo
"title": "Trip report",
"id": 5602232,
"sheets": |
{
"header": "Samantha (Ford Focus)",
"sections": [
{
"data": [
{
"rows": [

{
"to": {
"v": "02:39 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601941188000.0,
"type": "value",
"location": {
"lat": 54.9218516,
"lng": 37.335545

bo
"from": {
"v": "00:47 - Selyatino, Naro-
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601934439000.0,
"type": "value",
"location": {
"lat": 55.5311083,
"lng": 36.96743

b

"time": {
“v': "@1:52",
"raw": 6749.0,
"type": "value"

b

"length": {
“v': "106.29",
"raw": 106.29,
"type": "value"

tH

"avg_speed": {

“v": "57",
"raw": 57.0,
"type": "value"
b
"max_speed": {
“v"i o "94",
"raw": 94.0,
"type": "value"
}
Vo
{
"to": {

"v": "05:10 - Selyatino,
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601950218000.0,
"type": "value",
"location": {
"lat": 55.5308216,
"lng": 36.967315

P
"from": {
"v": "@3:11 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601943083000.0,
"type": "value",
"location": {
"lat": 54.9218116,
"lng": 37.3354833

b
"time": {
“v": "01:58",
"raw": 7135.0,
"type": "value"
b
"length": {
“v'": "106.97",
"raw": 106.97,
"type": "value"
b
"avg_speed": {
“v":i "54",
"raw": 54.0,
"type": "value"
b
"max_speed": {
“v"io "94",
"raw": 94.0,
"type": "value"

"v'": "07:54 - Khievskii
pereulok, 10, TNKh, Rassudovo, Troitsky Administrative Okrug,
Moscow, Russia, 143340",

"raw": 1601960075000.0,

"type": "value",

Naro-

Fominskii gor.

Moscow Oblast,

pereulok,
Moscow, Russia,

10, TNKh,

okrug,

Russia,

Rassudovo,

"location": {
"lat": 55.4666366,
"lng": 36.9216966

bo
"from": {
"v": "@7:38 - Selyatino,
Russia, 143370",
"raw": 1601959081000.0,
"type": "value",
"location": {
"lat": 55.53122,

“Ing": 36.9672916

Moscow Oblast,

b
"time": {
“v'": "00:16"
"raw": 994.0,
"type": "value"
b
"length": {
"v": "10.03",
"raw": 10.03,
"type": "value"
b
"avg_speed": {
"v": "36",
"raw": 36.0,
"type": "value"
b
"max_speed": {
"v": "85",
! ": 85.0,

raw
"type": "value"

"to": {
"v': "09:36 - Serpukhov,
142253",
"raw": 1601966165000.0,
"type": "value",
"location": {
"lat": 54.926835,

"Ing": 37.3341066

T
“from": {
"v'": "07:58 - Khievskii
Troitsky Administrative Okrug,

143340",

raw 1601960315000.0,
"type": "value",
"location": {

"lat": 55.46661,
"lng": 36.9216516

“v': "01:37",
58560.0,

Naro-

"type": "value"

Bo
"length": {
"v": "95.31",
"raw": 95.31,
"type": "value"
Bo
"avg_speed": {
"v'": "59",
"raw": 59.0,
"type": "value"
Bo
"max_speed": {
"v'": "91",
"raw": 91.0,
"type": "value"
}
bo
{
"to": {
"v": "09:53 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601967190000.0,
"type": "value",
"location": {
"lat": 54.921935,
"lng": 37.33551
}
bo
"from": {
"v": "09:43 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601966585000.0,
"type": "value",
"location": {
"lat": 54.9264033,
"lng": 37.3336633
}
bo
"time": {
“v': "@0:10"
"raw": 605.0,
"type": "value"
bo
"length": {
"v'": "0.95",
"raw": 0.95,
"type": "value"
bo
"avg_speed": {
"v': "e",
"raw": 6.0,
"type": "value"
bo
"max_speed": {
"v'": "13",
"raw": 13.0,
"type": "value"
I3

"to": A

\

Fominskii gor. okrug, Moscow Oblast,

raw
“type“:

Russia,

"12:36 - Selyatino, Naro-
143370",
1601977017000.0,

"value",

"location": {

e

"from":

\

Moscow Oblast, Russia, 142253",

raw
“type“:

"lat":
"lng":

55.5309666,
36.9674183

"10:27 - Serpukhov,

1601969226000.0,
"value",

"location": {

raw
"type":

e

"length":

\

raw
"type":

e

"lat":
"lng":

54.92199383,
37.335495

"02:09",
: 7791.0,
"value"

{
"108.48",

108.48,
"value"

"avg_speed": {

\

"sg"

"raw": 50.0,

"type" :

e

"value"

"max_speed": {

\

raw
"type":

"to": {

v
ozero\", gor. okrug Serpukhov,

142279",

Dernopol'e,

raw
”type":

"gg"
89.0,
"value"

"16:01 - KhP \"Lesnoe
Moscow Oblast, Russia,

1601989300000.0,
"value",

"location": {

5

"from":

\

Fominskii gor. okrug, Moscow Oblast,

raw
”type":

"lat":
"lng":

Russia,

54.9875133,
37.3093183

"13:34 - Selyatino, Naro-
143370",
1601980444000.0,

"value",

"location": {

"lat":
"lng":

55.5309966,
36.96738

}

Bo

"time": {
"v": "02:27",
"raw": 8856.0,
"type": "value"

Bo

"length": {
"v": "95,79",
"raw": 95.79,
"type": "value"

Bo

"avg_speed": {
"v": "39",
"raw": 39.0,
"type": "value"

Ws

"max_speed": {
"v": "88",
"raw": 88.0,
"type": "value"

}

}
s
"total": {
"text": "In total:",
"time": {
"v": "10:33",
"raw": 379860.0,
"type": "value"
b
"length": {
"v": "523.8",
"raw": 523.8,
"type": "value"

b
"avg_speed": {
“v": "50",
"raw": 50.0,
"type": "value"
b
"max_speed": {
“v'io "94",
"raw": 94.0,
"type": "value"
}

bo
"header": "Oct 6, 2020 (Tue)
}
I,
"type": "table",
"header": "Trips",
"columns": [

{

"align":
"field":
"title":
"width":

"left",

"from",

"Movement start",
4,

"weight": 3,
"highlight_min_max": false

7"

b
{

}
I,

"align":
"field":
"title":
"width":
"weight"

"left",

"to"

"Movement end",
4,

$3,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",

"length",

"Total trips length, \nkm",
P

9,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",
"time",
"Travel time",
1

’

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",

"avg_speed",

"Average speed, \nkm/h",
1,

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",
"max_speed",

"Max. speed, \nkm/h",
1,

0,

"highlight_min_max": false

"column_groups":

"rows":

[]

[

TR TS

"raw": 7.0,
"name": "Trips",

"highlight": false

"y": "523.8"
"raw": 523.8,
"name": "Total trips length, km",

"highlight": false

"yt "19:33"
"raw": 633.0,

"name" :

'Travel time",

"highlight": false

b
{
"v'": "50",
"raw": 50.0,
"name": "Average speed, km/h",
"highlight": false
bs
{
v "94",
"raw": 94.0,
"name": "Max. speed, km/h",
"highlight": false
b
{
"v": "515855",
"raw": 515855.0,
"name": "Odometer value *, km",
"highlight": false
}
1,
"type": "map_table",
"header": "Summary"
b
{
"text": "Odometer value at the end of the
selected period.",
"type": "text",
"style": "small_print"
}
Il
"entity_ids": [
311852

1,
"additional_field": ""
}
1,
"from": "2020-10-06 00:00:00",
"to": "2020-10-06 23:59:59"

Deleting reports

When the information has been received and processed, there is no need to leave the
generated report. It can be removed. Use report/tracker/delete.

Use the report_id from generate call response.

API request:

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/delete

\
-H 'Content-Type: application/json' \
-d '"{"hash": "ab6aa75587e5c59c32d347da438505fc3", "report_id":

"1234567"}"

HTTP GET

https://api.navixy.com/v2/fsm/report/tracker/delete?
hash=a6aa75587e5c59¢32d347da438505fc3&report_id=1234567

Last update: November 16, 2020

Bill
APl path: /bill.

create

Creates new bill for the user. Required subuser rights: payment_create .

parameters
name description type restrictions
payer some payer description string Payer Name
sum bill sum in default currency of the panel int 1000
example

https://api.navixy.com/v2/fsm/bill/create?
hash=22eac1c27af4be7b9dB4da2celaf111b&payer=John Doe&sum=500

response
{
"success": true,
"value": 6421 // created bill id
}
errors

* 222 - Plugin not found (when plugin 29 not available for user)

list

Shows list of bills with their parameters in array. Required subuser rights:
payment_create

structure:

https://api.navixy.com/v2/fsm/bill/1list?
hash=your_hash&limit=number_of_bills&offset=start_from

parameters

name description type format

limit maximum number of bills in list (maximum and int 10000
default 10 000) - optional

offset get bills starting from offset (default 0) - optional int 0

example

https://api.navixy.com/v2/fsm/bill/1list?
hash=22eac1c27af4be7b9dB4da2celaf111b&1limit=9500&0ffset=0

response
{
"success": true,
"count": 7, // total number of bills
"bills": [${bill}, ...]
}
where bill is
{
"order_id": 63602, // unique id
"created": "2012-03-05 11:55:83", // creation date/time
"sum": 150.0, // bill sum in rubbles
"status": "created", // bill order status

"positions": ["The subscription fee for the services of Gdemoi
Account W3"], // list of position names.
// usually contains one
element for bill
"link": "http://bill.b2field.com/xK1QEYK" // url to order

If bill created using /bill/create call then positions will contains exactly one element.
status may be one of:

« created — but not settled
. settled
« canceled

Note for Standalone version: Base part of link may be changed by billing.orders.baseUrl
config option.

errors

* 222 - Plugin not found (when plugin 29 not available for user)

Last update: September 10, 2020

Payment system

API path: /payment_system.

list
Return list of payment systems available for user.
required subuser rights: payment_create

response

"success": true,
"list": [<payment_system_settings>, ...]

where payment_system_settings is:

“type": "rbkmoney", // payment system type
"url": "https:_rbkmoney.com/acceptpurchase.aspx”, // URL to
send payment info,
"account": <string>, // (optional) dealer account in payment
system (eshopId for RBK)
“currency": "EUR", // 3-letter ISO 4217 currency code
“payment_code": "B2Field Demo", // (optional) code for payments
"subscription_code": "4671292", // (string) subscription code.
same as "payment_code" for 2Checkout (formerly Avangate) but for
subscriptions
"methods": [<string>, ...] // (optional) list of available
payment methods (may be empty)
// for type == "ios_inapp" only:
"prices": {
"Loccate_default_pay_1": 0.99,
"Loccate_default_pay_5": 4.99,
"Loccate_default_pay_16": 9.99,
"Loccate_default_pay_206": 19.99

errors

«+ 201 = Not found in database.

estimate/get

Returns the estimate of the monthly payment amount

required subuser rights: payment_create
response
"success": true,

"value": 400.0 // payment amount, rounded up to hundreds for
rubles or to tens for other currencies

}

mobile/pay
Create bill using 'mobile' payment system (AKA Qiwi Bank)

required subuser rights: payment_create

parameters
name description type
phone 10-digit phone number without country code (e.g. 6156680000) String
sum amount of money to pay, e.g. 100.50 . minimum is 1.00, double
maximum is 99999.00
response
{
"success": true
}
errors

+ 13 - Operation not permitted. (if this payment system is not enabled for user's PaaS
platform)

+ 201 - Not found in database. (if payment system was not configured properly)

+ 215 - External service error (if QIWI payment gateway returned an error)

Last update: December 17, 2020

Subscription

API path: /subscription.

Payment subscriptions

/subscription/avangate/

Working with 2Checkout (formerly Avangate) subscriptions (renewals).

cancel

Unsubscribe from auto-renewal by reference.
required subuser rights: payment_create
parameters

- reference - string. internal 2Checkout (formerly Avangate) subscription code. Get it
from list call.

response
"success": true

errors

+ 215 — External service error

list

List active 2Checkout formerly Avangate subscriptions (renewals).
required subuser rights: payment_create

parameters

no parameters

response

"success": true,

https://www.2checkout.com
http://www.avangate.com
https://www.2checkout.com
http://www.avangate.com

"list": [

"reference": "5EAD4BOB2F" // pass it to /subscription/
avangate/cancel

"code": "4679109" // 2Checkout (formerly Avangate)
product code

"quantity": 123 // count

"expiration_date": "2016-063-10 13:32:11" // next renew

date/time
b
]
}
errors

« 215 — External service error

Last update: August 21, 2020

Transaction

list

Get list of user's billing transactions for the specified period.
required subuser rights: payment_create

parameters

- from - date/time. Start date/time for searching.
+ to — date/time. End date/time for searching. must be after "from" date.

« limit - int (optional). Maximum number of returned transactions.

response
{
"success": true,
"list": [
{
"description": , // transaction description, e.g.
"Recharge bonus balance during tracker registration”
"type": , // type, e.g. "bonus_charge"
“subtype": , // subtype, e.g. "register"
"timestamp": , // date/time at which transaction was
created, e.g. "2013-08-02 08:16:40"
"user_id": , // user Id, e.g. 12203
"dealer_id": , // dealer Id, e.g. 5001
"tracker_id": , // tracker id, e.g., 3036, or 0 if
transaction is not associated with tracker
"amount": , // amount of money in transaction, can

be negative. e.g. -10.0000 means 10 money units were removed from
user's balance

"new_balance": , // user's money balance after
transaction, e.g. 800.0000

"old_balance": , // user’ s money balance before
transaction, e.g. 810.0000

"bonus_amount": , // amount of bonus used in transaction,
can be negative. e.g. 10.0000 means 10 bonuses units were added to
user's bonus balance

"new_bonus": , // user s bonus balance after
transaction, e.g. 10.0000

"old_bonus": // user’'s bonus balance before
transaction, e.g. 0.0000

}
]

errors

+ 211 - Requested time span is too big (more than maxReportTimeSpan config
option)

Last update: October 23, 2020

Tariff

APl path: /tariff.

Tariff JSON object structure:

"id": 1@, // (int) unique id

“name": "Business", // (string) tariff description

“group_id": 2, // (int) group of tariffs. user can change the
tariff only on the tariff in the same group.

“active": true, // (boolean). user can change the tariff only
on the active tariff.

“type": "monthly", // (string). tariff type. one of:
"monthly", "everyday", "activeday"

“price": 13.8, // (double). price per month for "monthly" and
"everyday" tariff or price per "active" day for "activeday" tariff

"early_change_price": 23.8, // (double) price of change tariff
from current to other

// with the last change in less than 30 days
(**tariff.freeze.period** config option).
// When not passed or "null" user cannot change tariff

frequently.

"device_limit": 1000, // (int) maximum number of devices per
account

“has_reports"” : true // (boolean) true if reports are allowed,
false otherwise

"paas_free": false, // (boolean) true if this tariff is free
for PaaS owner, false otherwise

"store_period": "12m", // data storage period, e.g. "2h" (2
hours), "3d" (3 days), "5m" (5 months), "1y" (one year)
"features": [

"map_layers"

1,

"map_filter": {
"exclusion": true,
"values": []

list

Get list of device's tariffs available to user.

If user's dealer if default dealer or paas then listed tariffs of that dealer
else listed tariffs of parent dealer.

Listed only tariffs available for user's legal type.

parameters
- device_type - (string) one of 'tracker’, ‘camera' or 'socket'.

response

{

"success": true,
"list": [${tariff}, ...] // list of JSON objects

See tariff object structure here.

Last update: October 23, 2020

Tariff tracker

APl path: /tariff/tracker/ .

User of dealer can switch tracker from tariff t1 to tariff t2 if:

7.
8.

. tracker belongs to user and isn't a clone.

. tracker's tariff last changed more than tariff.freeze.period (config option. default

30 days) ago.

. t1.tariff_id != t2.tariff_id, i.e. new tariff must be differ from current.

. t1.dealer_id = t2.dealer_id = dealer.effectiveDealerld, i.e. current and new tariffs

must belongs to user's effective dealer

. t2.active = 1, i.e. new tariff is active (tariff's option "Allow users to switch to this

tariff independently” in panel is set on)

. t1.grouping = t2.grouping, i.e. user can change tariff only within one group of tariffs

t2.device = tracker, i.e. new tariff must be for trackers

new tariff is available to user's legal type

User's effective dealer is

1. user's dealer if its dealer_id = defaultDealerld (config option) or dogovor_type =
'paas’
2. parent of user's dealer elsewise
errors

+ 201 - Not found in database (if user doesn't have trackers with given tracker_id)

+ 219 — Not allowed for clones of the device

+ 237 - Invalid tariff (if there are no tariff with tracker.tariff_id and belongs to user's

effective dealer)

change

Change tariff of tracker (with tracker_id) to new tariff (with tariff_id).

required subuser rights: admin (available only to master users)

response

{

"success": true }

errors

+ 221 (Device limit exceeded) — when new tariff device limit is less then count of
trackers in cabinet.

- 238 (Changing tariff is not allowed) — user can't switch tracker to that tariff.

+ 239 — New tariff doesn't exist.

- 240 (Not allowed to change tariff too frequently) - tariff last changed less or equal
to 30 days (tariff.freeze.period config option).

list

List tariffs on which user can switch passed tracker (even when tariff last changed less
or equal than tariff.freeze.period time ago).

parameters
* tracker_id
response
"success": true,
"list": [${tariff}, ...],
"days_to_next_change": ${int} // days to next free change, or ©

if free change available.

}

See tariff object structure here.

Last update: October 23, 2020

Base

API path: /base.

nothing
The report for health-check. It will do nothing.

example

https://api.navixy.com/v2/fsm/base/nothing?
hash=22eac1c27af4be7b9d@4da2celaf111b

response

{ "success": true }

send_email

Sends email from the platform to any email address with specified title and text. Needs
ROOT access level.

structure:

https://api.navixy.com/v2/fsm/base/send_email?
hash=your_hash&from=sender_mail&to=recipient_mail&title=text_title&mes

parameters

description type format

from from email address string from@mail.com
to to email address string to@mail.com
title title of the email string example title
message text of the email string example message

service_id service parameter int 1

mailto:from@mail.com
mailto:to@mail.com

description format

service_pass service parameter int 1

example

https://api.navixy.com/v2/fsm/base/send_email?
hash=22eac1c27af4be7b9d04da2celaf111b&from=b2field@mail.com&to=user@ma

response

{ "success": true }

Last update: September 10, 2020

Data

/data/spreadsheet/parse

Parse spreadsheet file (.xlsx, .xls, .csv) and store it in internal storage.

{
"file_id": <string, unique file id>,
"header": <optional, array of string>,
"preview" :<array of array of string, first N rows of file>
}
parameters

description type
file File to upload File
preview_count size of preview, min=1, max=20 Integer
parse_header parse first row as header? Boolean
header_map if parse_header is true should contains map of Object

matching column name to field identifier, {"Label":
"label", "Latitude": "lat"}

If parse_header is set to true, first row of the uploaded file will be treat as header
corresponding to given header_map .

response

"file_id": <string, unique file id>,
"header": <optional, array of string>,
"preview": <array of array of string, first N rows of file>

errors

234 - Invalid data format.

Last update: October 23, 2020

Dealer

APl path: /dealer.

get_ui_config
Gets dealer info and dealer-specific Ul settings by domain.
It doesn't need authentication and available in UNAUTHORIZED access level.

structure:

https://api.navixy.com/v2/fsm/dealer/get_ui_config?
domain=your_domain

parameters
name description type format
domain dealer’s monitoring interface domain, e.g. string b2field.com
“b2field.com”
example

https://api.navixy.com/v2/fsm/dealer/get_ui_config?
domain=b2field.com

response
{
"success": true,
"dealer": {
"id": 5001, // int. dealer id
"ui_domain": "demo.b2field.com", // Dealer's UI domain
"company_url": "b2field.com" // Dealer's promo site URL

// e.g. "http://
www.b2field.com" or "demo.b2field.com"

b
"settings": { //may be null if dealer has not set any
custom settings
"domain" : "demo.navixy.com", // same as dealer.ui_domain
"service_title": "Navixy Demo", // Title of the service
"locale": "at_AT", // default locale of the
dealer

"demo_login": "demo", // dealer's login for demo

user
// (or empty string if no
demo user available)
"demo_password": "demo", // dealer's password for
demo user
// (or empty string if no
demo user available)
"maps"”: ["roadmap", "osm"], // list of available
maps,
// e.g. ["roadmap", "cdcom", "osm", "wikimapia",
"yandexpublic", "hybrid", "satellite"]
"default_map": { //default map settings

"type": "roadmap", // default map type
"location": { //default map center location
"lat": 57.0, // latitude
"lng": 61.0 // longitude
be
"zoom": 190 // default map zoom level
be
“currency": "EUR", // dealer's currency ISO
4217 code

"payment_link": "http://site.de/pay.php", // PaaS-

dependent link that can be used
// to refill user's

account. Can be null or empty.

“promo_url": "http://site.de/about/", !/
customizable "About company" url

"google_client_id": "clientID", // client id which which
must be used to work with google API or null

"favicon": "paas/5001/custom.ico", // path or url to
dealer's interface favicon

"logo": "paas/5001/logo.png", // path or url to dealer's
logotype

"app_logo": "paas/5001/app_logo.png", //nullable,
path or url to dealer's mobile app logotype,

"login_wallpaper": "paas/5001/login.png", // path or url
to dealer's interface login wallpaper

"desktop_wallpaper": "http://test.com/test.jpg", // path
to dealer's interface wallpaper or null

"monitoring_logo": "http://test.com/test.jpg", // path to
dealer's interface monitoring logo or null

"login_footer": "All rights reserved.", // footer which
will be included in login page.

"allow_registration": true, // if true then

registration is available for dealer's users
// all html special chars
escaped using HTML entities.

"show_mobile_apps" : true, // if true then mobile
applications are available for dealer's users
"show_call_notifications" : true, // if true then

call notifications are available for dealer's users
"default_user_settings": {

"geocoder": "google", // default geocoder
"route_provider": "progorod", // default router
"measurement_system": "metric", // measurement system

"translit": false

3

"display_model_features_link" : true, // when true show in
model info link to squaregps.com (UI option)

“color_theme": "aqua", // (string) color theme
code or empty string (for default theme)
"app_color_theme": "blue_1", // (string. 128 chars max)

mobile app color theme code or empty string (for default theme)
“privacy_policy_link": "http://privacy-policy-url",

"tos": "Terms Of Service text",
"enable_trackers": true, // if true, GPS monitoring
interface is available for dealer's users
"enable_cameras": false, // if true, camera
monitoring interface is available for dealer's users
"tracker_model_filter": { // a filter which
describes tracker models available for registration
"exclusion": true, // in this example all
models available
"values": []
b
"internal”: { // additional options
"light_registration": true, // use "very
simple" registration with demo tracker
"demo_tracker_source_id": 14, // id of tracker
created on 'light_registration'’
"demo_tracker_label": "Demo tracker", // label of of

tracker created on 'light_registration’

b
"no_register_commands": false // if true then do not send
commands to devices on activation
b
"demo_ends": "20814-01-01", // a date when demo for
this PaaS ends.
// Is null when PaaS is
not on demo tariff

"premium_gis": true, // true, if dealer has
Premium GIS package
"features": ["branding_web"] // set of the allowed

features for dealer (all list see below in "Dealer features")

}

Dealer features

description

branding_web allow to use custom logos, color theme, domain and favicon in Ul
for web version

branding_mobile allow to use custom icon, logo, color theme in the mobile
applications
subpaas allow to use Sub-Dealers (can be used only together with

navixy_label)

name description

navixy_label show "Powered by Navixy" in Ul (required for subpaas feature)

errors

+ 12 — Dealer not found (if corresponding PaaS was not found in database)

- 201 - Not found in database (if there is no Ui settings data for corresponding PaaS)

Last update: September 10, 2020

Feedback

API path: /feedback .

<feedback> = {
"text": <feedback text, string, may not be null>,
"useragent": <optional, string>,
"platform”: <optional, string>,
"screenshots": <optional, array of strings, base64-encoded
data:url image, example: data:image/jpeg;base64,[encoded image]>,
"log": <optional, log file>
}

send_email

parameters

 feedback

* type — optional

Send email with feedback message on feedback.toEmail Where type is one of strings:
support_request (default), feature_request and review.
Screenshot and log will be added to email as attachments.

response

{ "success": true }

Last update: August 21, 2020

File
API path: /file.

stats/read

Get user's files statistic.

response
{
"success": true,
"value": {
"file_count": 24,
"total_size": 40192953
"quota": 1048576600
bytes
}
}

Last update: October 23, 2020

// count of all updloaded files
// total files size in bytes
// space available to the user in

Notification

API path: /notification.

list
List user notifications.

response

"success": true,
"list": [<notification>, ...]

where

<notification> =
{
"id": <int>,
"message": <string>,
"show_till": <date/time> // date until notification should
be showed, e.g. "2014-08-03 17:27:28"

}

Last update: August 21, 2020

Timezone

API path: /timezone .

list

Information about all supported timezones for the specified locale. Does not require
user authorization.

response
{
"success": true,
"list": [
{
"zone_id": <string>, // timezone ID, which is used

throughout the API, e.g. "Africa/Dar_es_Salaam”
"description": <string>, // Localized description of
the timezone, e.g. "Ekaterinburg"

"base_offset": <double>, // base timezone offset in
hours, e.g. 4 for Moscow. May be negative or fractional!
"dst_offset": <int>, // DST offset in hours (@ if

no DST rules for this timezone).

"“country_code": <string>, // ISO country code for
timezone, e.g. "RU",

"alt_ids": [<string>, <string>] //list of strings,
optional, alternative timezone IDs

o

errors

- only standard errors

Last update: August 21, 2020

Custom Field File

API path: /custom_field/file.

create
parameters

« filename - string, optional
* size - integer

* metadata — object, optional
* type - "image" | "file"

+ entity_type - string, see entity types

response
{
"success": true,
"value": {

"file_id": 111,
"url": "http://bla.org/bla",
"expires": "2020-02-03 03:04:00",
"file_field_name": "file1l1",
"fields": {

“token": "a43f43ed4340b86c808ac"

errors

+ 268 — File cannot be created due to quota violation.

+ 271 - File size is larger than the maximum allowed (by default 16 MB).

Last update: February 25, 2021

../../entity/

Entity actions

Entity describes a class of objects for which representation and editable fields can be
customized. For example, you can add your own custom fields to places entity or
rearrange existing fields.

entity is:

<entity> = {
"id": 123, //identifier
“type": "place", //currently, only "place" is supported
"settings": {
"layout": { //describes layout of fields for entity.

"sections": [//each section can contain one or
more fields. At least one section must exist in layout.
{
"label": "Section label",
"field_order": [//built-in fields and ids of
custom fields (as strings)
"label",
"location",
"131212",
"tags",

"description”

]

Entity Types: * place - a place object, the same that is available through place API

Builtin fields:

* label

* location

- tags

+ description

« task - a task object, the same that is available through task API

Builtin fields:

employee
status
label
location

* % *

../../field_service/place/
../../field_service/task/

period
status_change_date
arrival_date

tags

stay_duration
description
external_id

form

* % 3k X X X 3 *

list

Get list of entities which are available for customization.

parameters
none
response
{
"success": true,
"list": [<entity>, ... |
}
errors

Standard errors only.

read
Get entity by id or by type

parameters

name description type

id ID of an entity int

type type of an entity entity type string, see above
Exactly one of these parameters must be specified. They can't be both null or both
non-null.

response

"success": true,

"entity": <entity>,
"fields": [//fields associated with this entity
<field>,

errors

+ 201 (Not found in database) - if there is no entity with such ID

update(entity)
Updates settings of customizable entity. Entity must have a valid id.
required subuser rights: places_custom_fields_update for entities with type place

WARNING: entity.settings.layout.sections must contain ids of all builtin and
custom fields which are associated with this entity. No fields can be omitted from
layout, only reordering is allowed. Fields cannot be duplicated, even in different
sections.

parameters

name description type

entity Entity object with valid id and settings object

errors

+ 201 (Not found in database) - if there is no entity with such ID

- 7 (Invalid parameters) - if entity object violates restrictions described above

response

"success": true

Last update: February 25, 2021

Entity fields

APl path: /entity/fields.

Fields actions

Field allows to add custom information to a customizable entity. Each field belongs to

one entity.

field is:

<field> = {
"id": 131312, //identifier, null when new object
"label": "Additional info",
"type": "text", //type of field, see below
"required": false, //whether field is required to be filled or

not
"description”: "Info about place"”, //Additional info about the
field, max 250 characters
"params": { ... } //type-specific. If no specific params, this
field should be omitted
}
field types:

+ text -text field up to 700 unicode symbols
Special params: none

* bigtext - bigger text field, up to 20000 unicode symbols with reduced search and
sorting capabilities

Special params: none

+ email - field for storing email, validated to contain valid email address
Special params: none

* phone - field for storing phone number, validated to contain valid phone number
Special params: none

+ decimal - decimal number from -999999999999.999999 to 999999999999.999999
. Values are stored up to the sixth decimal place

Special params: none

+ integer -integer number from -2463 to 2463 - 1
Special params: none

* employee - link to employee

Special params:

{
"responsible”: true //entities with this set to "true" can be
shown to the employee in the mobile app.
//0nly one employee field can have this value
set to "true"

}

If there's an employee assigned to a Mobile Tracker App (Android /i0S), and a place
has a custom field of type "responsible employee", such place will be available in mobile
app to view. Thus, field employee can view all places assigned to him to visit them, etc.

« file - link to file

Special params:

{

"allowed_extensions": ["docx", "pdf"]

}

* image - link to image file

Special params: none

read(entity_id)

Get a set of custom fields associated with the specified entity. Note that you must know
entity id, which can be obtained from entity/list.

parameters
name description type
entity_id ID of an entity int

response

../../../field_service/employee/
https://play.google.com/store/apps/details?id=com.navixy.xgps.tracker&hl=ru
https://apps.apple.com/us/app/x-gps-tracker/id802887190
../../../field_service/place/

"success": true,
"list": [<field>, ...]
errors

- 201 (Not found in database) - if there is no entity with such ID

update(entity_id, fields, delete_missing)
Update a set of custom fields associated with the specified entity.

required subuser rights: places_custom_fields_update for fields associated with place
entity

Fields passed with id equal to null will be created. If field already exists, its type
must be equal to type of already stored field (i. e. you cannot change type of a field).

All fields associated with the same entity must have different labels.

Passing fields with id from non-existent fields or fields bound to another entity will
result in an error.

WARNING If delete_missing is true, all existing fields which are missing from the
fields list will be permanently deleted! Otherwise they are unaffected.

parameters

description type
entity_id ID of an entity int
fields List of new/existing fields to be created/updated \<field>]
delete_missing (optional, default is false) delete fields not present boolean

in fields list

errors

+ 201 (Not found in database) - if there is no entity with such ID

+ 7 (Invalid parameters) - if fields violate restrictions described above

response

A list of all fields associated with the specified entity. Newly created fields will have
their IDs filled.

"success": true,
"list": [<field>, ...]

Last update: February 25, 2021

Entity search Conditions

APl path: /entity/search_conditions.

Search conditions are used to search and filter list of certain entities by built-in and/or

custom fields.

Example:

<search_conditions> = [

{"type":"and", "conditions":[
{"type":"or", "conditions":[
{
“type": "eq",
"field":"18"
"value": 1111
b
{
"type": "contains",
"field":"27",
"value": "qqq"
}
]
b
{
"type": "contains",
"field" :"label",
“value": "who"
}

Conditions are represented by an array, each condition during search is evaluated, and
the result is either true or false. Thus, boolean operations such as AND or OR can be
applied to them. All conditions in a top-level array are joined using AND operator.

WARNING: A maximum of 72 conditions can be used at once, including nested

conditions.

Condition types

AND

<and_condition> = {
"type":"and",
"conditions":|
<list of other conditions here...>

Evaluates all specified conditions and joins them using AND boolean operator.

OR

<or_condition> = {
“type":"or",
"conditions":|
<list of other conditions here...>

]

Evaluates all specified conditions and joins them using OrR boolean operator.

NUMBER EQUALS

<eq_condition> = {
"type": "eq",
“field":"18", //built-in field or field id
"value": 1111 //number value to which field is matched
against. Can be decimal.
//Must be between -2763 and 2763-1. No more
than 6 fraction digits

}

Checks if specified field is equal to provided number value. Works for text fields too
(e.q. "111" is considered equal to 111). For linked entity fields, it matches linked entity
id to number value.

CONTAINS STRING

<contains_condition> = {

"type": "contains",

"field":"label", //built-in field or field id

"value": "who" //string value to which field is matched
against.

//Cannot be null or empty, max length is 760
}

Checks if specified field contains substring equal to provided value. Works for number
fields too, e.g. (123123 contains "123"). For linked entity fields, it matches value against
linked entity label or other similar field (first name, last name, etc.)

Last update: August 21, 2020

History

APl path: /history .

Tracker history entry

{
"id": 1,
“type": "tracker",
"is_read": false,
"message": "Alarm",
"time": "2020-01-01 00:00:00",
"event": "offline", // type of history event extension
"tracker_id": 2, // column object_id
"rule_id": 3, // column event_id

"track_id": 4,
"location":{

"lat": 50.0,
"lng": 60.0,
"precision": 50
fio
"address": "address", // string. address of location or
“" (empty string)
"extra": {

"task_id": null , //related task identifier
"parent_task_id": null, //related parent task identifier
(for task checkpoint related history entries)
"counter_id": null, //related counter identifier
"service_task_id": null, //related service task id
"checkin_id": null, //related check-in marker
"place_ids": null, //related place identifiers,
"last_known_location": false, //true if location may be
outdated,
"tracker_label": "Tracker label",//tracker label
"emergency": false //true for events with a same flag,
optional
}
}

Date/time type described in data types description section.

read
Returns history entry with the specified id.
parameters

+id — int. history entry ID

+ add_tracker_label — boolean. optional, if true tracker label will be added to message

response

"success": true,
"value": ${history_entry}

where history_entry described in Tracker history entry.
errors

+ 2071 - Not found in database (when there are no history entries with that id)

mark_read
Mark history entry as read by id (see: Tracker history entry).
parameters

+id — int. Tracker history entry ID

response
{ "success": true }

errors

- 201 - Not found in database (when there are no history entries with that id)

mark_read_all
Mark all user's history entries read.

response

{ "success": true }

Last update: October 23, 2020

Tracker history

API path: /history/tracker/ .

list

List less then or equal to limit of tracker events filtered by event types (events) between
from date/time and to date/time sorted by time field.

parameters

- trackers - [int]. list of tracker's ids
- from — date/time. start date/time for searching
* to — date/time. end date/time for searching. must be after "from" date
-events — ["string"] (optional, default: all). list of history types
* limit — int (optional, default: maxHistoryLimit. max count of entries in result
- ascending - boolean (optional, default: true). Sort ascending by time when it is true
and descending when false.
If events (event types) not passed then list all event types.

Available event types can be obtained by /history/type/list action.

Default and max limit is 1000 by default. (Note for StandAlone: this value configured by
maxHistoryLimit config option).

example

https://api.navixy.com/v2/fsm/history/tracker/list?
hash=user_hash&trackers=[tracker_id]&from=2018-02-19
10:29:00&t0=2018-02-19 11:30:00&events=["event_type"]

response

"success": true,

"list": [${history_entry}, ...], // list of zero or more
JSON objects

"limit_exceeded": false // boolean. false when listed all
history entries satisfied to conditions

// and true otherwise

}

where history_entry described in Tracker history entry.

errors
+ 211 - Requested time span is too big (time span between from and to is more than
maxReportTimeSpan days).
+ 212 - Requested limit is too big (limit is more than maxHistoryLimit).

« 217 — List contains nonexistent entities — if one of the specified trackers does not
exist or is blocked.

Last update: October 23, 2020

History type
API path: /history/type.

list

Returns available history types with localized descriptions.

parameters

* locale — locale code

- only_tracker_events — boolean (optional). Default - true.

response
{
"success": true,
"list": [<history_type>,
}

where history_type is

{

"type": "alarmcontrol",
"alarmcontrol"

"description": "Car alarm"
alarm"
}

Last update: August 28, 2020

// history type, e.g.

// localized description,

e.

g.

"Car

History unread

API path: /history/unread.

list
List less than or equal to limit of the latest user's unread history entries.
parameters

+ limit, int, optional

« from, date/time, optional
Default and max limit is maxHistoryLimit.

Type of from is date/time. Default from is now minus one year.

response
{
"success": true,
"list": [${history_entry}, ...] //list of zero or more JSON
objects

}

where history_entry described in Tracker history entry
errors

+ 212 - Requested limit is too big (more maxHistoryLimit config option)

count
Get count of user's unread history messages from from date.
parameters

+ from - optional

* type - optional
Type of from is date/time. Default from is now minus one year.

response

"success": true,
"count": 1

Last update: October 23, 2020

Plugin

API path: /plugin.
Plugins are special software modules which modify the behavior of various API calls.

Plugin object structure

"id": <plugin id, e.g. 1>, //int
"type": <plugin type, e.g. "tracker_register">, //String
"ui_module": <plugin ui module name, e.g.
"Registration.appPlugins.BundledSim">, //String
"module": <plugin module name, e.g.
"“com.navixy.plugin.tracker.register.bundled_sim">, //String
"filter": { //a model filter which describes to which device
models this plugin is applicable
"exclusion": true, //if true, "models" lists models NOT
supported by this plugin, if false, "models" contains all
supported models
"values": <list of the regexes for models which are (not)

supported by this plugin, e.g. ["navixymobile",
"mobile_unknown.*"]> //string]|]
b
"parameters” : { ... } //Plugin-specific parameters as JSON
object. This field is omitted if it's null (and it is null most of
the time)
}
Example
{
"id": 4,
"type": "tracker_report",
"module": "com.navixy.plugin.tracker.report.trip",
"ui_module": "Trip",
"filter": {
"exclusion": true,
"values": []
}
}
list

Get all plugins available to the user. List of available plugins may vary from user to user
depending on platform settings and purchased features. Only these plugins can be used
to register trackers, generate reports, etc.

response

"success": true,
"list": [<plugin>, ..]
For "plugin” object structure, see plugin/.
errors
+ General types only.
Standalone-specific:

If no plugins enabled for user and his dealer then available plugins enabled by default
(config options plugin.tracker.register.defaultlds and plugin.tracker.report.defaultids).

Last update: October 23, 2020

Report plugins

Trips report
A report on detailed trip history.
parameters

Default plugin_id: 4.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with boolean
seconds.
include_summary_sheet_only If true the report will contain only a boolean

summary sheet for all chosen devices.

split Trips will be split by stops if true. boolean

show_idle_duration Will show idle duration in report if boolean
true.

show_coordinates Every address will contain longitude boolean

and latitude if true.

filter If true short trips will hide (shorter boolean
than 300m/have less than 4 points
total and if the device circles around
one point (e.g., star pattern from GPS
drifting)).

group_by_driver Group trips by driver assigned to the boolean
device if true.

Stops report

A report on detailed stops history.
parameters

Default plugin_id: 6.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true timestamps will be with seconds. boolean

show_coordinates Every address will contain longitude and latitude if boolean
true.

Trips and stops by shifts report
A report on trips and stops by shifts.
parameters

Default plugin_id: 77.

Plugin-specific parameters:

name description

hide_empty_tabs If true, empty tabs will be hidden.
show_seconds If true timestamps will be with seconds.
shifts List of shifts with names, start and end time. e.g.

[{"name" :"Shift1", "start_time":"00:00", "end_time" :"23:59"}]

filter If true short trips will not coincide (shorter than 300m/have less tha
4 points total and if the device circles around one point (e.g., star
pattern from GPS drifting)).

show_coordinates Every address will contain longitude and latitude if true.

name description

split_at_midnight Split shifts at midnight if true.

* shifts is:

{
"shifts": [{
"name" :"Shift1",
"start_time":"00:00",
"end_time" :"23:59"
1
}

Geofence visits report
A report on date, time, and mileage in geofence.
parameters

Default plugin_id: 8.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean
show_mileage Adds mileage to the report if true. boolean
show_not_visited_zones Will show non visited zones if true. boolean
min_minutes_in_zone Minimum minutes in a zone to start int

determining visit. If the device was in a
zone less than a specified time - the visit
not count.

zone_ids List of zone ids. array of
int

POl visits report

A report on date, time, and the number of visits to POls.
parameters

Default plugin_id: 85.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean
show_mileage Adds mileage to the report if true. boolean
show_not_visited_places Will show non visited POls if true. boolean
min_minutes_in_place Minimum minutes in a place to start int

determining visit. If the device was in a
place less than a specified time - the visit
not count.

place_ids List of place ids. array of

int

Car security report

A report on alarms, tow alerts, AutoControl events, and crashes.
parameters

Default plugin_id: 15.

Plugin-specific parameters:
name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true timestamps will be with seconds. boolean

Emergency button (SOS) report
A report on SOS button events log
parameters

Default plugin_id: 16.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean

Fall detection report

A report on fall detection sensor log.
parameters

Default plugin_id: 17.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean

Tracker detach report

A report on demounting devices from tracking objects.
parameters

Default plugin_id: 18.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true timestamps will be with seconds. boolean

Overall security report

A report on all events related to security and safety.
parameters

default plugin_id: 19.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean
group_by_type If true events will group by type. boolean

Engine hours report

A report on time spent in motion and on idling.
parameters

default plugin_id: 7.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true timestamps will be with boolean
seconds.

show_detailed boolean

name description type

If true will contain detailed engine
hours tab.

include_summary_sheet_only If true the report will contain only a boolean
summary sheet for all chosen devices.

filter If true short trips will not coincide boolean
(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern
from GPS drifting)).

Fuel volume report

A report on fuel refills, drains, consumption (based on fuel level sensor).
parameters

default plugin_id: 10.

Plugin-specific parameters:

name description type

show_seconds If true timestamps will be with boolean
seconds.

graph_type The type of X-axis. Can be "time" string
or "'mileage". enum

detailed_by_dates If true show final data on fuel boolean

traffic for each day in the period.

include_summary_sheet_only If true the report will contain boolean
only a summary sheet for all
chosen devices.

use_ignition_data_for_consumption Calculate consumption only boolean
when the ignition was on if

true.

name description type

include_mileage_plot Optional. Used if boolean
graph_type = time . Show
mileage plot if true.

filter If true short trips will not boolean
coincide (shorter than 300m/
have less than 4 points total and
if the device circles around one
point (e.g., star pattern from
GPS drifting)).

include_speed_plot If true show speed plot. boolean

smoothing Smooth graph if true. boolean
Smoothing reduces the accuracy
of calculating refills or drains.

surge_filter If true enables surge filter. boolean

surge_filter_threshold Defines a level of surge filter. float
Can be 0.01 - 0.99.

speed_filter If true enables speed filter. boolean

speed_filter_threshold Defines a speed filter threshold. int

Flow meter report

A report on fuel consumption counted by flow meter sensors.
parameters

default plugin_id: 78.

Plugin-specific parameters:

name description type

detailed_by_dates boolean

name description type

If true, atable with statistics for every
single day in selected date range will
be added to the report.

filter If true short trips will not coincide boolean
(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern
from GPS drifting)).

include_summary_sheet_only If true the report will contain only a boolean
summary sheet for all chosen devices.

Vehicle sensors report
A report on CAN-bus and OBD2-port data.
parameters

default plugin_id: 22.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
details_interval_minutes The interval in minutes. Can be [39, int

60, 180, 360].

graph_type The type of X-axis. Can be "time" or string enum
"mileage”.

smoothing Smooth data if true. boolean

sensors List of objects containing tracker_id array of
and sensor_id. objects

* sensors is:

{

"sensors" :[{
"tracker_id":37714,
"sensor_id" :57968

H

}
Speed violation
A report on speeding instances.
parameters

default plugin_id: 27.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean
min_duration_minutes A minimum time in seconds when speed is int

more than max_speed to determine violation.
max_speed A maximum speed to determine violation. int

group_by_driver Group violations by driver assigned to the boolean
device if true.

filter If true short trips will not coincide (shorter boolean
than 300m/have less than 4 points total and if
the device circles around one point (e.g., star
pattern from GPS drifting)).

Device switching ON/OFF report

A report on switching device using hardware switch.
parameters

default plugin_id: 23.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true timestamps will be with seconds. boolean

GSM connection lost

A report on long disruptions of server connection
parameters

default plugin_id: 13.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean

Measuring sensors report

A report on detailed sensor reading history.
parameters

default plugin_id: 9.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
details_interval_minutes The interval in minutes. Can be [5, 38, int

60, 180, 360].
graph_type The type of X-axis. Can be "time" or string

"mileage”. enum

name description type

smoothing Smooth data if true. boolean

show_address Address of each reading appears in report boolean
if true.

filter If true short trips will not coincide boolean

(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern from
GPS drifting)).

Sensors List of objects containing tracker_id and array of
sensor_id. objects

* sensors is:

{
"sensors" :[{
"tracker_id":37714,
"sensor_id" :57968

1
}
Equipment working time
A report on activity and idle time of the equipment.
parameters

default plugin_id: 12.

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true timestamps will be with boolean
seconds.

min_working_period_duration int

name description type

A minimum time in seconds the
equipment works to determine
activity. Min = 1.

show_idle_percent If true show percentage of idling. boolean

filter If true short trips will not coincide boolean
(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern
from GPS drifting)).

sensors List of objects containing tracker_id array of
and sensor_id. objects

* sensors is:

{

"sensors" :[{
"tracker_id":37714,
"sensor_id" :57968

+

}

Tasks report
A report on tasks statuses.
parameters

default plugin_id: 42.

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean
show_external_id Show external ID of task if true. boolean

show_description Show description of task if true. boolean

name description type
show_forms Show forms when the task has it if true. boolean

show_places_and_zones Show places and geofences if true. boolean

Form completion statistics report
A report on form fields completion rate.
parameters

default plugin_id: 70.

description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

Work statuses report
A report on status changes history.
parameters

default plugin_id: 47.

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean

Check-in report

A report on markers for Check-in function.
parameters

default plugin_id: 80

Plugin-specific parameters:

name description type

show_coordinates If true, coordinates will be added to the report. boolean

Driver shift change report

A report on driver identification.
parameters

default plugin_id: 66.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true timestamps will be with seconds. boolean
Trips by state

A report on trips breakdown by jurisdictions.
parameters

default plugin_id: 73.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with boolean
seconds.
filter If true short trips will not coincide boolean

(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern
from GPS drifting)).

name description type

include_summary_sheet_only If true the report will contain only a boolean
summary sheet for all chosen devices.

group_type A group type. Can be "province" or string
“country". enum

Report on all events

An overall report about any kind of events.
parameters

default plugin_id: 11.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean
group_by_type Groups events by type if true. boolean
event_types A list of event types that will be considered. array of string

+ the object with all event_types is:

{
"event_types":
["auto_geofence_in", "auto_geofence_out", "door_alarm", "forward_collisio

}

Geofence entry/exit events
A report on ins ad outs of a certain geofence.
parameters

default plugin_id: 89.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean
min_minutes_in_zone Minimum minutes in a zone to start int

determining visit. If the device was in a zone
less than a specified time - the visit not count.

SMS-locations report

A report on location requests over SMS channel.
parameters

default plugin_id: 20.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean

Eco-driving report

A report on safety driving.
parameters

default plugin_id: 46.

Plugin-specific parameters:

description type

harsh_driving_penalties A list of penalties for harsh driving. array of
objects

description

speeding_penalties A list of penalties for speeding. array of
objects
speed_limit Max permitted speed value. int
idling_penalty Penalty for idling. int
min_idling_duration A minimum time in minutes to determine int
idling.
min_speeding_duration A minimum time in minutes when speed int
is more than speed_limit to determine
violation.
use_vehicle_speed_limit If true vehicle speed limit used instead boolean

of speed_limit parameter.

show_seconds If true timestamps will be with seconds. boolean

* harsh_driving_penalties is:

{

"harsh_driving_penalties": {
"harshAcceleration":5,
"harshBraking":5,
"harshTurn":5,
"harshAccelerationNTurn":12,
"harshBrakingNTurn" :12,
"harshQuickLaneChange" :12

}

}

* speeding_penalties is:

{
"speeding_penalties": {
"10":2,
"20":10,
"30":25,
"50":75}

"10","20", "30", "50" - the number of penalty points assigned for speeding by 10, 20, 30,
and 50 km/h.

Stay in zones report

Custom report for AO NIPIGAZ

parameters

default plugin_id: 84

plugin-specific parameters:

name description type

show_seconds If true, time values in report should have boolean
format with seconds. Default is false.

show_tags If true, tags fields will be added to the boolean
report. Default is false.

min_minutes_in_zone Minimum time in zone (geofence). Default int, min
is 5. value 1
zone_ids IDs of user zones, required, min size 1, max list of ints
size 30

Last update: May 12, 2021

Report schedule

API path: /report/schedule.

schedule_entry object:

{
"id": 1,
"enabled": true,
"parameters": {
"period": "1m",
"schedule": {
"type": "weekdays",
"weekdays": [1, 2, 3, 4, 5]
b
"report": {
"trackers": [1],
"title": "Title",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [1, 2, 3, 4, 5, 6, 7]
bo
"geocoder": "yandex",
"plugin”: {
"plugin_id": 4,
"show_idle_duration": false
}
b
"emails": ["email@example.ru"],
"email_format": "pdf",
"email_zip": false,
"sending_time": "12:00:00"
H
"fire_time": "2014-09-05 00:00:00",
"last_result": {
"success": true,
"id": 1
}
}

+ id -int. Schedule id, ignored on create.

* enabled - boolean. true if the scheduled report enabled.
* period - string. Report period, "Xm" | "w" | "d" | "y".

+ emails - optional array of string. List of emails.

« email_format - string enum. Can be "pdf" | "xIs".

+ sending_time - optional string. Local time for sending reports, default "00:00:00",
hourly granularity.

« fire_time - optional string. Last schedule fire time, ignored on create/update.
+ last_result object with last report creation result.

« id -int. Anid of generated report.

create
Create new report schedule entry.
required sub-user rights: reports

parameters

description

schedule schedule object without fields "id", "fire_time", JSON
"last_result". object
example
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/schedule/create’
\

-H 'Content-Type: application/json' \

-d '"{"hash": "abaa75587e5c59¢c32d347da438505fc3", "shedule":
{"enabled": true, "parameters": {"report": {"title": "Trip
report", "trackers": [669673], "time_filter": {"from": "00:00:00",
"to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]}, "plugin":
{"hide_empty_tabs": true, "plugin_id": 4, "show_seconds": false,
"include_summary_sheet_only": false, "split": true,
"show_idle_duration": false, "show_coordinates": false, "filter":

true, "group_by_driver": false}}, "period": "1w",
"email_zip":false, "email_format":"xls", "emails":
["test@example.com"], "sending_time": "00:00:80", "schedule":

{"type": "weekdays", "weekdays": [1]}}}}}'

response

"success": true,
"id": 111

« id -int. An id of the created schedule entry.

errors

+ 217 - List contains nonexistent entities (if one or more of tracker ids belong to
nonexistent tracker (or to a tracker belonging to different user)).

+ 222 - Plugin not found (if specified report plugin not found).

+ 236 - Feature unavailable due to.

delete
Delete report schedule with the specified id.

required sub-user rights: reports

parameters

description type
schedule_id Id of the report schedule to delete. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/schedule/delete’
\

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3",
"schedule_id": "1234567"}"

HTTP GET

https://api.navixy.com/v2/fsm/report/schedule/delete?
hash=a6aa75587e5c59c32d347da438505fc3&schedule_id=1234567

response
{
"success": true
}
errors

+ 201 - Not found in the database (if there is no schedule with specified id).

list

Get all report schedules belonging to user.

required sub-user rights: reports
examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/schedule/list"’
-H 'Content-Type: application/json' \
-d '"{"hash": "abaa75587e5¢c59c32d347da438505fc3"}"'

HTTP GET

https://api.navixy.com/v2/fsm/report/schedule/list?
hash=a6aa75587e5c59c32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 1,

"enabled": true,
"parameters”: {
"period": "1m",
"schedule": {
"type": "weekdays",
"weekdays": [1, 2, 3, 4, 5]
b
"report": {
"trackers": [1],
"title": "Title",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [1, 2, 3, 4, 5, 6, 7]
b
"geocoder": "yandex",
"plugin”: {
"plugin_id": 4,
"show_idle_duration": false
}
b
"emails": ["email@example.ru"],
"email_format": "pdf",
"email_zip": false,
"sending_time": "12:00:00"
bo
"fire_time": "2014-09-05 00:00:00",
"last_result": {
"success": true,
"id": 1

}H

\

errors

General types only.

update
Update existing report schedule.
required sub-user rights: reports

parameters

description

schedule schedule object without fields "id", "fire_time", JSON
"last_result". object
example
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/schedule/update’
\

-H 'Content-Type: application/json' \

-d '"{"hash": "a6aa75587e5c59c32d347da438505fc3", "shedule":
{"enabled": true, "parameters": {"report": {"title": "Trip
report", "trackers": [669673], "time_filter": {"from": "00:00:00",
"to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]}, "plugin":
{"hide_empty_tabs": true, "plugin_id": 4, "show_seconds": false,
"include_summary_sheet_only": false, "split": true,
"show_idle_duration": false, "show_coordinates": false, "filter":

true, "group_by_driver": false}}, "period": "1w",
"email_zip":false, "email_format":"xls", "emails":
["test@example.com"], "sending_time": "00:00:00", "schedule":

{"type": "weekdays", "weekdays": [1]}}}}}'

response
{
"success": true
}
errors

+ 217 - List contains nonexistent entities (if one or more of tracker ids belong to
nonexistent tracker (or to a tracker belonging to different user)).

* 222 - Plugin not found (if specified report plugin not found).

- 236 - Feature unavailable due to tariff restrictions (if device's tariff does not allow
usage of reports).

Last update: October 23, 2020

Report tracker

APl path: /report/tracker .

delete
Delete report from the database.

required sub-user rights: reports

parameters
name description type
report_id Id of a report that should be deleted. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/delete

\

-H '"Content-Type: application/json' \

-d '"{"hash": "a6aa75587e5c¢59c32d347da438505fc3", "report_id":
"1234567"}"'

HTTP GET

https://api.navixy.com/v2/fsm/report/tracker/delete?
hash=a6aa75587e5c59c32d347da438505fc3&report_id=1234567

response
{
"success": true
}
errors

+ 101 = In demo mode this function disabled.

download

Retrieve generated report as a file.

required sub-user rights: reports

parameters

description

report_id Id of a report that should be deleted. int

format A format of report that should be downloaded. Can be string
"xls", xIsx" or "pdf". enum

headless Optional parameter. Default= false . If need report boolean

without title page and TOC, setitto true.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/
download' \

-H 'Content-Type: application/json' \

-d '"{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
"1234567", "format": "pdf"}'
HTTP GET

https://api.navixy.com/v2/fsm/report/tracker/download?
hash=a6aa75587e5c59¢32d347da438505fc3&report_id=1234567&format=pdf

response
A report rendered to file (standard file download).
errors

+ 204 - Entity not found (if report with the specified id not found).

+ 229 - Requested data is not ready yet (if report exists, but its generation is still in
progress).
generate
Requests a report generation with the specified parameters.

required sub-user rights: reports

parameters

name description type

from A string containing date/time in yyyy-MM-dd HH:mm:ss string
format (in user's timezone).

to A string containing date/time in yyyy-MM-dd HH:mm:ss string
format (in user's timezone). Specified date must be after
"from" date.
title Report title. Default title will be used if null. string
geocoder Which geocoder to use. See geocoder/. string
trackers List of trackers' ids to be included in report (if report is by array of
trackers). int
employees List of employees' ids to be included in report (if report is array of
by employees). int
time_filter An object which contains everyday time and weekday JSON
limits for processed data, e.g. {"to":"18:00", object

“from":"12:00", "weekdays":[1,2,3,4,5]}.

plugin A plugin object (see below). JSON
object

Parameter object fields:

Part of parameters are plugin-specific. See "Tracker report plugins" section. Common
parameters are:

description

plugin_id An id of a tracker report plugin which will be used to int
generate report.

show_seconds Flag to define whether time values in report should boolean
have format with seconds. true - show seconds,
false - don't show seconds.

../../../tracking/geocoder/
../../plugin/report_plugins/

Plugin example:

{
"details_interval_minutes" :60,
"“plugin_id": 9,
"show_seconds": false,
"graph_type": "time",
"“smoothing" :false,
"sensors" :[{

"tracker_id": 123456,
"sensor_id": 123456
+
}
example
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/
generate' \

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59¢c32d347da438505fc3", "title":
"Trip report", "trackers": [669673], "from": "2026-10-05
00:00:00", "to": "2020-10-06 23:59:59", "time_filter": {"from":
"00:00:00", "to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]},
"plugin”: {"hide_empty_tabs": true, "plugin_id": 4,
"show_seconds": false, "include_summary_sheet_only": false,
"split": true, "show_idle_duration": false, "show_coordinates":
false, "filter": true, "group_by_driver": false}}'

response

"success": true,
"id": 222

+ id -int. Anid of the report queued for generation. Can be used to request report
generation status and to retrieve generated report.

errors

+ 15 (Too many requests / rate limit exceeded) - the number of reports created by one
user in parallel limited.

+ 211 (Requested time span is too big) - interval from from to to is bigger then max
allowed time span (see response).

"success": false,
"status": {
"code": 211,
"description”: "Requested time span is too big"

}

"max_time_span": "P90D"

* max_time_span - string. ISO-8601 interval.

+ 217 (List contains nonexistent entities) - when one or more of tracker ids belong to
nonexistent tracker (or to a tracker belonging to different user).

+ 222 (Plugin not found) - when specified report plugin not found.

- 236 (Feature unavailable due to tariff restrictions) - when one of the trackers has
tariff with disabled reports - ("has_reports" is false).

list

Returns info about all available generated or in-progress reports.
required sub-user rights: reports

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3"}"

HTTP GET

https://api.navixy.com/v2/fsm/report/tracker/list?
hash=a6aa75587e5c59¢c32d347da438505fc3

response

"success": true,"list": [
{
"created": "2020-10-08 21:59:30",
"time_filter": {
"from":"00:00:00",
"to":"23:59:59",
"weekdays":[1,2,3,4,5,6,7]},
"title": "Trip report",
"id": 5601797
"parameters"”: {

"geocoder": "google",
"trackers": [669673],
"plugins”: [{

"plugin_id": 4,

"filter": true,
"hide_empty_tabs": true,
"show_coordinates": false,
"split": true,

"include_summary_sheet_only": false,
"show_seconds": false,
"group_by_driver": false,
"show_idle_duration": false

L
"locale_info": {
"locale": "ru_RU",
"time_zone": "Asia/Yekaterinburg",
"measurement_system": "metric"
}
b
"percent": 100,
"type": "user",

"from": "2020-10-05 00:00:00",
“to": "2020-10-06 23:59:59"

1}

* created - string. Date when report created.
+ time_filter - object.
« from - string. Control time "from" of day.
* to - string. Control time "to" of day.
+ weekdays - array of int. Control "weekdays" of the report. Can be 1-7.
« title - string. Report title.
+ id - int. Report id which can be used to retrieve or download report.
* parameters - object with report parameters.
* trackers - array of int. List of tracker ids used for report.

« plugins - array of objects. List of parameters for all plugins which were used
to generate report.

+ locale_info - object with information about the locale, timezone, and
measurement system used for the report.

« percent -int. Report readiness in percent.
* type - string enum. Type of created report.
« from - string. "from" parameter from generate.

* to - string. "to" parameter from generate.
errors

* No specific errors.

retrieve

Retrieve generated report as JSON.

required sub-user rights: reports

parameters

description

report_id Id of a report that should be deleted. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/
retrieve' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id"
"1234567"}"'

HTTP GET

https://api.navixy.com/v2/fsm/report/tracker/retrieve?
hash=a6aa75587e5c59c32d347da438505fc3&report_id=1234567

response

. Example

{
"success": true,
"report": {
"created": "2020-10-066 16:01:46",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [
1,
2
3,
4,
5,
6,
7
]
Jo
"title": "Trip report",
"id": 5602232,
"sheets": |
{
"header": "Samantha (Ford Focus)",
"sections": [
{
"data": [
{
"rows": [

{
"to": {
"v": "02:39 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601941188000.0,
"type": "value",
"location": {
"lat": 54.9218516,
"lng": 37.335545

bo
"from": {
"v": "00:47 - Selyatino, Naro-
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601934439000.0,
"type": "value",
"location": {
"lat": 55.5311083,
"lng": 36.96743

b

"time": {
“v': "@1:52",
"raw": 6749.0,
"type": "value"

b

"length": {
“v': "106.29",
"raw": 106.29,
"type": "value"

tH

"avg_speed": {

“v": "57",
"raw": 57.0,
"type": "value"
b
"max_speed": {
“v"i o "94",
"raw": 94.0,
"type": "value"
}
Vo
{
"to": {

"v": "05:10 - Selyatino,
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601950218000.0,
"type": "value",
"location": {
"lat": 55.5308216,
"lng": 36.967315

P
"from": {
"v": "@3:11 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601943083000.0,
"type": "value",
"location": {
"lat": 54.9218116,
"lng": 37.3354833

b
"time": {
“v": "01:58",
"raw": 7135.0,
"type": "value"
b
"length": {
“v'": "106.97",
"raw": 106.97,
"type": "value"
b
"avg_speed": {
“v":i "54",
"raw": 54.0,
"type": "value"
b
"max_speed": {
“v"io "94",
"raw": 94.0,
"type": "value"

"v'": "07:54 - Khievskii
pereulok, 10, TNKh, Rassudovo, Troitsky Administrative Okrug,
Moscow, Russia, 143340",

"raw": 1601960075000.0,

"type": "value",

Naro-

Fominskii gor.

Moscow Oblast,

pereulok,
Moscow, Russia,

10, TNKh,

okrug,

Russia,

Rassudovo,

"location": {
"lat": 55.4666366,
"lng": 36.9216966

bo
"from": {
"v": "@7:38 - Selyatino,
Russia, 143370",
"raw": 1601959081000.0,
"type": "value",
"location": {
"lat": 55.53122,

“Ing": 36.9672916

Moscow Oblast,

b
"time": {
“v'": "00:16"
"raw": 994.0,
"type": "value"
b
"length": {
"v": "10.03",
"raw": 10.03,
"type": "value"
b
"avg_speed": {
"v": "36",
"raw": 36.0,
"type": "value"
b
"max_speed": {
"v": "85",
! ": 85.0,

raw
"type": "value"

"to": {
"v': "09:36 - Serpukhov,
142253",
"raw": 1601966165000.0,
"type": "value",
"location": {
"lat": 54.926835,

"Ing": 37.3341066

T
“from": {
"v'": "07:58 - Khievskii
Troitsky Administrative Okrug,

143340",

raw 1601960315000.0,
"type": "value",
"location": {

"lat": 55.46661,
"lng": 36.9216516

“v': "01:37",
58560.0,

Naro-

"type": "value"

Bo
"length": {
"v": "95.31",
"raw": 95.31,
"type": "value"
Bo
"avg_speed": {
"v'": "59",
"raw": 59.0,
"type": "value"
Bo
"max_speed": {
"v'": "91",
"raw": 91.0,
"type": "value"
}
bo
{
"to": {
"v": "09:53 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601967190000.0,
"type": "value",
"location": {
"lat": 54.921935,
"lng": 37.33551
}
bo
"from": {
"v": "09:43 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601966585000.0,
"type": "value",
"location": {
"lat": 54.9264033,
"lng": 37.3336633
}
bo
"time": {
“v': "@0:10"
"raw": 605.0,
"type": "value"
bo
"length": {
"v'": "0.95",
"raw": 0.95,
"type": "value"
bo
"avg_speed": {
"v': "e",
"raw": 6.0,
"type": "value"
bo
"max_speed": {
"v'": "13",
"raw": 13.0,
"type": "value"
I3

"to": A

\

Fominskii gor. okrug, Moscow Oblast,

raw
“type“:

Russia,

"12:36 - Selyatino, Naro-
143370",
1601977017000.0,

"value",

"location": {

e

"from":

\

Moscow Oblast, Russia, 142253",

raw
“type“:

"lat":
"lng":

55.5309666,
36.9674183

"10:27 - Serpukhov,

1601969226000.0,
"value",

"location": {

raw
"type":

e

"length":

\

raw
"type":

e

"lat":
"lng":

54.92199383,
37.335495

"02:09",
: 7791.0,
"value"

{
"108.48",

108.48,
"value"

"avg_speed": {

\

"sg"

"raw": 50.0,

"type" :

e

"value"

"max_speed": {

\

raw
"type":

"to": {

v
ozero\", gor. okrug Serpukhov,

142279",

Dernopol'e,

raw
”type":

"gg"
89.0,
"value"

"16:01 - KhP \"Lesnoe
Moscow Oblast, Russia,

1601989300000.0,
"value",

"location": {

5

"from":

\

Fominskii gor. okrug, Moscow Oblast,

raw
”type":

"lat":
"lng":

Russia,

54.9875133,
37.3093183

"13:34 - Selyatino, Naro-
143370",
1601980444000.0,

"value",

"location": {

"lat":
"lng":

55.5309966,
36.96738

}

Bo

"time": {
"v": "02:27",
"raw": 8856.0,
"type": "value"

Bo

"length": {
"v": "95,79",
"raw": 95.79,
"type": "value"

Bo

"avg_speed": {
"v": "39",
"raw": 39.0,
"type": "value"

Ws

"max_speed": {
"v": "88",
"raw": 88.0,
"type": "value"

}

}
s
"total": {
"text": "In total:",
"time": {
"v": "10:33",
"raw": 379860.0,
"type": "value"
b
"length": {
"v": "523.8",
"raw": 523.8,
"type": "value"

b
"avg_speed": {
“v": "50",
"raw": 50.0,
"type": "value"
b
"max_speed": {
“v'io "94",
"raw": 94.0,
"type": "value"
}

bo
"header": "Oct 6, 2020 (Tue)
}
I,
"type": "table",
"header": "Trips",
"columns": [

{

"align":
"field":
"title":
"width":

"left",

"from",

"Movement start",
4,

"weight": 3,
"highlight_min_max": false

7"

b
{

}
I,

"align":
"field":
"title":
"width":
"weight"

"left",

"to"

"Movement end",
4,

$3,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",

"length",

"Total trips length, \nkm",
P

9,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",
"time",
"Travel time",
1

’

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",

"avg_speed",

"Average speed, \nkm/h",
1,

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",
"max_speed",

"Max. speed, \nkm/h",
1,

0,

"highlight_min_max": false

"column_groups":

"rows":

[]

[

TR TS

"raw": 7.0,
"name": "Trips",

"highlight": false

"y": "523.8"
"raw": 523.8,
"name": "Total trips length, km",

"highlight": false

"yt "19:33"
"raw": 633.0,

"name" :

'Travel time",

"highlight": false

bo
{
"v'": "50",
"raw": 50.0,
"name": "Average speed, km/h",
"highlight": false
Vo
{
"v'": "94",
"raw": 94.0,
"name": "Max. speed, km/h",
"highlight": false
o
{
"v": "515855",
"raw": 515855.0,
"name": "Odometer value *, km",
"highlight": false
}
I
"type": "map_table",
"header": "Summary"
o
{
"text": "Odometer value at the end of the
selected period.",
"type": "text",
"style": "small_print"
}
Il
"entity_ids": [
311852

1,
"additional_field": ""
}
1,
"from": "2020-10-06 00:00:00",
"to": "2020-10-06 23:59:59"

* report - object. Body of the generated report. Its contents are plugin-dependent.
errors

+ 204 - Entity not found (if report with the specified id not found).

- 229 - Requested data is not ready yet (if report exists, but its generation is still in
progress).
status
Returns a report generation status for the specified report id.

required sub-user rights: reports

parameters

name description type

report_id Id of a report that should be deleted. int
examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/report/tracker/status’
\

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
"1234567"}"
HTTP GET
https://api.navixy.com/v2/fsm/report/tracker/status?
hash=a6aa75587e5¢c59¢32d347da438505fc3&report_id=1234567

response

"success": true,
"percent_ready": 75

* percent_ready - int. Report readiness in percent.
errors

+ 204 - Entity not found (if report with the specified id not found).

Last update: October 13, 2020

Subuser

APl path: /subuser .

Contains API calls related to sub-users, that is, additional users who have access to
your account and monitoring assets. Sub-users is convenient way for corporate clients
to provide multiple employees, who have different roles and priveleges, with access to
the monitoring system.

"Usual” user account is called "master account" in relation to sub-users.

Every sub-user can operate on a subset of trackers from your "master account". Every
entity, which is associated with unavailable trackers, also becomes hidden from sub-
user. This is called "scoping". Sub-users's rights can also be limited to prevent
unauthorized changes to your data and application setting.

NOTE: Sub-users cannot have any "exclusive" objects. Every tracker, rule, task, etc., even
created or edited by sub-user, still belongs to your account. The only exception is
reporting system: every sub-user has its own reports pool and reports schedule.

Sub-user object structure

Sub-user object is almost identical to usual user.

<subuser> = {
"id": 183, //sunuser id, can be null (when creating new sub-

user)

"activated": true, // true if user is
activated (allowed to login)

"login": "user@test.com", // User email as login.
Must be valid unique email address

"first_name": ${string}, // User's or contact
person first name

"middle_name": S${string}, // User's or contact
person middle name

"last_name": ${string}, // User's or contact
person last name

"legal_type": "legal_entity", // either "legal_entity",
"individual" or "sole_trader"

"phone": "491761234567", // User's or contact phone
(18-15 digits)

"post_country": "Germany", // country part of user's
post address

"post_index": "61169", // index part of user's
post address

"post_region": "Hessen", // region part of user's

post address

"post_city": "Wiesbaden", // city from postal address

"post_street_address": "Marienplatz 2", // street address

"registered_country": "Germany", // country part of user's
registered address

"registered_index": "61169", // index part of user's
registered address

"registered_region": "Hessen", // region part of user's
registered address

"registered_city": "Wiesbaden", // city from registered
address

"registered_street_address": "Marienplatz 2", // User's
registered address

"state_reg_num": ${string}, // State registration
number. E.g. EIN in USA, OGRN in Russia. 15 characters max.

“tin": ${string}, // Taxpayer identification
number aka "VATIN"

"legal_name": "E. Biasi GmbH", // user legal name (for
"legal_entity" only)

"iec": ${string}, // Industrial Enterprises
Classifier aka "KPP" (used in Russia. for "legal_entity" only)

"security_group_id": 333, // Id of the security

group to whic sub-user belongs to. Can be null, which means
default group with no privileges
//this fields are read-only, they should not be used in user/

update
"creation_date": "2016-05-20 00:00:00" // date/time when

user was created

}

delete
Delete sub-user. This operation cannot be reversed.

required tariff features: multilevel_access — for ALL trackers required subuser rights:
admin (available only to master users)

parameters

* subuser_id - int. id of the sub-user belonging to current account

response
{
"success": true
}
errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

+ 201 = Not found in database — if sub-user with such id does not exist or does not
belong to current master user.

list

List all subusers belonging to current user.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters
none
response
{
"success": true,
"list": [<subuser>, ... | //list of all sub-users belonging to
this master account

}

Subuser object is described here.
errors

+ 13 - Operation not permitted - if user has insufficient rights

- 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

register
Allows you to create sub-users associated to your master account.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters

- user - JSON object. object without "id" field

- password - printable string. 6 to 20 characters. New sub-user's password.

response

"success": true,

"id": <id of the created sub-user>

Subuser object is described here.
errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

+ 201 — Not found in database — when specified security_group_id does not exist

+ 206 - login already in use (if this login email already registered)

update
Update subuser data.

required tariff features: multilevel_access — for ALL trackers required subuser rights:
admin (available only to master users)

parameters
* user - JSON object. object with "id" field

response

"success": true

Subuser object is described here.
errors

+ 13 - Operation not permitted - if user has insufficient rights

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

+ 201 — Not found in database - if sub-user with such id does not exist or does not
belong to current master user. Also when specified security_group_id does not exist

Last update: October 23, 2020

Subuser security group

API path: /subuser/security_group/ .

Contains API calls related to security groups, that is, groups of sub-users with the
specified set of rights and privileges.

Security group object structure

${security_group} = {
"id": 103, //group id, can be null (when creating new
security group)
"label": "Managers", //group label
“privileges": {
"rights": [
"tag_update", "tracker_register" //a set of rights
granted to security group (see below)
1,
"store_period": "1d" // optional, period of viewing
history in legacy duration format, e.g. "2h" (2 hours), "3d" (3
days), "5m" (5 months), "1y" (one year)
}
}

Default security group

Default (or empty) security group is the group which is effective when sub-users'
"security_group_id" is null. It has empty "rights" array.

Master user's rights

Master user always has all rights, including exclusive "admin" right.

Security group rights

Absolute majority of read operations does not require any rights (that is, they are
available to all sub-users, even with "null" security group). However, some entities may
be hidden because they are associated with the trackers unavailable to sub-user. Most f
data-modifying operations, on the contrary, require some rights to be present.

Possible rights are:

« admin, — master user-only, can't be assigned to security groups

* tracker_update,

* tracker_register,

* tracker_rule_update,
* tracker_configure,

« tracker_set_output,
* tag_update,

* task_update,

+ zone_update,

+ place_update,

+ employee_update,

+ vehicle_update,

* payment_create

« form_template_update,
* reports

+ checkin_update

create
Create new security group.

required tariff features: multilevel_access — for ALL trackers required subuser rights:
admin (available only to master users)

parameters
- group - JSON object. S{security_group} without "id" field

response

"success": true,
"id": ${id of the created security group}

errors

+ 13 - Operation not permitted - if user has insufficient rights

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

delete

Delete existing security group. All sub-users belonging to this group will be assigned to
default (null) security group.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters

* security_group_id - int. id of security group, which must be deleted.

response
{
"success": true,
}
errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 201 — Not found in database — when group with the specified security_group_id
does not exist

+ 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

list

List all security groups belonging to current user.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters
none.
response
{
"success": true,
"list": [${security_group}, ...] //list of all sub-users
belonging to this master account

}

Security group object is described here.

errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

update
Update existing security group.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters

- group - JSON object. S{security_group} with "id" field

response
{
"success": true
}
errors

+ 13 - Operation not permitted - if user has insufficient rights

+ 201 — Not found in database — when security group with the specified id does not
exist

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

Last update: October 23, 2020

Subuser session

API path: /subuser/session/ .

create

Create new session for the specified sub-user and obtain its hash. Can be used to log in
to sub-user's accounts.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters
* subuser_id - int. id of the sub-user belonging to current account

response

"success": true,
"hash" : ${hash of the created subuser session}

Subuser object is described here.
errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

+ 201 — Not found in database — if sub-user with such id does not exist or does not
belong to current master user.

Last update: October 23, 2020

Subuser tracker

API path: /subuser/tracker .

Contains API calls to control which tracker is available to which sub-user.

bind
Give access for sub-user to the specified trackers.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters

* subuser_id - int. id of the sub-user belonging to current account.

- trackers - array of int. array of tracker id-s to associate with the specified sub-user.
All trackers must belong to current master user.

response
{
"success": true
}
errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

+ 201 = Not found in database — if sub-user with such id does not exist or does not
belong to current master user.

+ 262 - Entries list is missing some entries or contains nonexistent entries — if one or
more of specified tracker ids don't exist.

list

Get a list of tracker ids to which this sub-user has access.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters

* subuser_id - int. id of the sub-user belonging to current account.

response
{
"success": true,
"list" : [${tracker_id1}, ...] //list of tracker ids to which
this sub-user has acccess
}
errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

+ 201 = Not found in database — if sub-user with such id does not exist or does not
belong to current master user.

unbind
Disable access for sub-user to the specified trackers.

required tariff features: multilevel_access - for ALL trackers required subuser rights:
admin (available only to master users)

parameters

* subuser_id - int. id of the sub-user belonging to current account.

- trackers - array of int. array of tracker id-s to associate with the specified sub-user.
All trackers must belong to current master user.

response
{
"success": true
}
errors

+ 13 — Operation not permitted — if user has insufficient rights

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without "multilevel_access" tariff feature)

+ 201 - Not found in database — if sub-user with such id does not exist or does not
belong to current master user.

+ 262 - Entries list is missing some entries or contains nonexistent entries — if one or
more of specified tracker ids don't exist.

Last update: October 23, 2020

Tag

API path: /tag.

tag object
<tag> =
{
"id": 3,
"avatar_file_name": "asdf.jpg",
"name": "hop",
"color": "FF0000"
}
tagged entity types
* place
* task

* task_schedule
+ employee

* vehicle

* zone

« tracker

create
Create new tag.
required subuser rights: tag_update
parameters
+ tag - JSON object.
response

"success": true,
"id": 111 //id of the created tag

errors

General types only.

delete

Delete tag with the specified id.
required subuser rights: tag_update
parameters

- tag_id - (int) id of the tag to delete.

response
{
"success": true
}
errors

+ 201 - Not found in database (if there is no tag with such id)

list
Get all tags belonging to user with optional filtering.
parameters

- filter - (string) optional filter for tag name, 3-60 characters or null.

response
{
"success": true,
"list": [<tag>, ... |
}
errors

General types only.

search
Search entities that bound with all of specified tags.
parameters

- tag_ids - (Array or int) tag IDs.

- entity_types - (Array of tagged entity types) optional, filter for entity types.

response

{
"success": true,
"result": {
"place": [...], //array of place objects
"task": [...], //array of task objects
"task_schedule": [...], //array of task schedule objects
"employee": [...], //array of employee objects
"vehicle": [...], //array of vehicle objects
“zone": [...], //array of zone objects
"tracker": [...] //array of tracker objects
}
}
errors

General types only.

update

Update existing tag.

required subuser rights: tag_update
parameters

+ tag - JSON object.

response
{
"success": true
}
errors

+ 201 - Not found in database (if there is no tag with such id)

Last update: November 20, 2020

Tag avatar

APl path: /tag/avatar .

assign
required subuser rights: tag_update
parameters

- tag_id

icon_id

Assign icon_id (from standard icon set) to this tag. Icon_id can be null - this means
that uploaded avatar should be used instead of icon.

response
{
"success": true
}
errors

+ 201 - Not found in database (when vehicle with tag_id not found in db)

upload

Upload avatar image for specified tag.
Then it will be available from [api_base_url]/[api_static_path]/tag/avatars/
<file_name>

€e.g. https://api.navixy.com/v2/fsm/static/tag/avatars/abcdef123456789.png.
required subuser rights: tag_update
avatar_file_name returned in response and will be returned from /tag/list.

MUST be a POST multipart request (multipart/form-data), with one of the parts being an
image file upload (with the name 'file').

File part mime type must be one of:

- image/jpeg or image/pjpeg
+ image/png

+ image/gif
parameters

* tag_id — tag id

- file — image file

- redirect_target — (optional) URL to redirect. If redirect_target passed return redirect

to <redirect_target>?response=<urlencoded response json>

response

"success": true,

"value": <string> // avatar file name

errors
Here is the list of errors that might occurred:

- 201 - Not found in database (when tag with tag_id not found in db)
+ 233 - No data file (if file part not passed)

+ 234 - Invalid data format (if passed file with unexpected mime type)

+ 254 - Cannot save file (on some file system errors)

Last update: September 9, 2020

User

API path: /user.
User specific actions:

+ /user/activate

+ /user/auth

+ /user/get_info

+ /user/get_tariff_restrictions

- /user/resend_activation

activate

Activates previously registered user with the provided session hash (it is contained in
activation link from email sent to user). Available only to master users.

| Attention

This call will receive only session hash from registration email. Any other hash will
result in result error code 4 (user not found or session ended).

response

{ "success": true }

auth
Try to authenticate user.

It does not need authentication/hash and is available at UNAUTHORIZED access level.

parameters
name description type restrictions
login User email as login (or demo login) string not null

password User password string

name description type restrictions

not null, 1 to 40
printable
characters

dealer_id If specified, API will check that user int optional
belongs to this dealer, and if not,
error 102 will be returned.

example

$ curl -X POST 'https://api.navixy.com/v2/fsm/user/auth' \
-H 'Content-Type: application/json' \

-d '{ "login": "test@email.com", "password": "passwordi123456" }'
response
{
"success": true,
"hash": <string> // session hash
}
errors

+ 11 - Access denied (if dealer blocked)
+ 102 — Wrong login or password
* 103 — User not activated

+ 104 - Logins limit exceeded, please reuse existing sessions instead (see also user/
session/renew)

+ 105 — Login attempts limit exceeded, try again later

get_info

Gets user information and some settings.
parameters

Only session hash .

example

$ curl -X POST 'https://api.navixy.com/v2/fsm/user/get_info' \
-H 'Content-Type: application/json' \
-d '{ "hash": "a6aa75587e5c59c32d347da438505fc3" }'

Get basic user info.

response

"success": true,

"paas_id": 7,

"paas_settings": ${pass_settings},
"user_info": {

"id": 43568, // user id

"login": "demo@navixy.com", // user's login (in most
cases it's an email address)

"title": "John Smith", // user first and last
name or organization title

"phone": "79123456789", // user phone (if not

empty)
"creation_date": "2016-05-20 ©1:10:34", // user
registration date/time

"balance": 74.31, // user balance, max. 2
digits after dot. For subusers, this field should be ignored

"bonus": @, // user bonus, max. 2
digits after dot. For subusers, this field should be ignored

"locale": "en_US", // user locale, for
example "en_EN"

"demo": true, // true if this is a demo
user, false otherwise

"verified" : true, // true if user email
already verified

"legal_type" : "individual", // string. "individual"
"legal_entity" or "sole_trader"”

"default_geocoder": "google", // user's default
geocoder ("google", "yandex", "progorod", "osm", or "locationiq")

“route_provider": "google", // user's route provider
("progorod", "google" or "osrm")

"time_zone": "America/New_York", // user timezone name

"measurement_system" : "metric", // user's measurement
system ("metric", "imperial" or "us")

"tin": "2345678239", // Taxpayer
identification number aka "VATIN" or "INN"

"iec": $§{string}, // Industrial Enterprises

Classifier aka "KPP". Used in Russia for legal entities. Optional.
// postal address

"post_country": "USA", // country

"post_region": "NY", // region part of post
address (oblast, state, etc.)

"post_index": "10120", // post index or ZIP code

"post_city": "New York", // city part of post
address

"post_street_address": "1556 Broadway, suite 416" // tail

part of post address
// legal (juridical) address

"registered_country": "USA", // country

"registered_region": "NY", // region part of
post address (oblast, state, etc.)

"registered_index": "10120", // post index or
ZIP code

"registered_city": "New York", // city part of
post address

"registered_street_address": "1556 Broadway, suite 416" //
tail part of post address

"first_name": "John",

"middle_name": "Walker",

"last_name": "Smith",

"legal_name": "QWER Inc." // juridical name (optional)

b

"master": { // returned only if current user is sub-user. All
fields have same meaning as in "user_info", but for master user's
account

"id": 1234, // same as in "user_info"

"demo": false, // same as in "user_info"

"legal_type": "individual", // same as in "user_info"
"first_name": "David", // same as in "user_info"
"middle_name": "Middle", // same as in "user_info"
"last_name": "Blane", // same as in "user_info"
"legal_name": "Blah LLC", // same as in "user_info"
"title": "David Blane", // same as in "user_info"

"balance": 0.0, // master user balance, max. 2 digits
after dot. Only returned if subuser has "payment_create"” right

"bonus": 89.78, // master user bonus, max. 2 digits after
dot. Only returned if subuser has "payment_create" right

}H

"tariff_restrictions": ${tariff_restrictions},
"premium_gis": true,
"features": ["branding_web"],
"privileges”: { // only returned for subusers. Describes
effective subuser privileges
"rights": [
"tag_update"
]

where

* paas_settings same as settings in /dealer/get_ui_config response,

* tariff_restrictions is JSON object same as in /user/get_tariff_restrictions

response,

« features is a set of allowed Dealer features.

get_tariff_restrictions

Gets user tariff restrictions.

parameters
Only session hash.

example

$ curl -X POST 'https://api.navixy.com/v2/fsm/user/
get_tariff_restrictions' \

-H 'Content-Type: application/json' \

-d '{ "hash": "a6aa75587e5c59c32d347da4385065fc3" }'

response

"success": true,
"value": ${tariff_restrictions}

where tariff_restrictions is JSON object:

{
"allowed_maps": [${map_name}, ...] // [string]. list of
allowed maps, e.g. ["roadmap"”, "osm"]
}
logout

Destroys current user session.
parameters
Only session hash .

example

S curl -X POST 'https://api.navixy.com/v2/fsm/user/logout' \
-H 'Content-Type: application/json' \
-d '{ "hash": "ab6aa75587e5c59c32d347da438505fc3" }'

response

{ "success": true }

resend_activation
Send new activation link to user.

It does not need authentication/hash and is available at UNAUTHORIZED access level.

parameters

name description type restrictions

login user login (email) string not null

example

$ curl -X POST 'https://api.navixy.com/v2/fsm/user/logout' \
-H 'Content-Type: application/json' \
-d '{ "login": "users_login" }'

response
{ "success": true }

errors

+ 201 (Not found in database) - user with passed login not found.
+ 209 (Failed sending email) — can't send email.

+ 264 (Timeout not reached) — previous activation link generated less than 5 minutes
ago (or other configured on server timeout).

{
"success": false,
"status": {
"code": 264,
"description”: "Timeout not reached"
P
“timeout": "PT5M", // timeout between sending activation
links in IS0-8601 duration format
“remainder": "PT4M31.575S" // remaining time to next try in
IS0-8601 duration format
}

+ 265 (Already done) - user already activated and verified

Last update: August 21, 2020

User password

API path: /user/password.

change

Changes password of user with the provided session hash (it is contained in password
restore link from email sent to user by "user/restore_password".

NOTE: this call will receive only session hash from password restore email. Any other
hash will result in result error code 4 (user not found or session ended)

parameters
- password (string) - New password for the user, 6 to 20 printable characters

response
{ "success": true }

errors

+ 101 - In demo mode this function is disabled (if specified session hash belongs to
demo user)

set
Changes password for logined user.

parameters

- old_password (string) — Current password of the user

- new_password (string) — New password for the user, 6 to 20 printable characters

response
{ "success": true }

errors

+ 101 - In demo mode this function is disabled (if specified session hash belongs to
demo user)

+ 225 - New password must be different (if old_password = new_password)

- 248 — Wrong password (if old_password is wrong)

Last update: October 23, 2020

User personal info

API path: /user/personal_info.

update
Update user personal info.
Require plugin with id=45.

parameters

+ legal_type - string. Either "legal_entity", "sole_trader" or "individual".

- first_name - string. Contact person first name.

* middle_name - string. Contact person middle name.

* last_name - string. Contact person last name.

- phone - string. 0-15 digits. optional. Contact phone. Not changes if not passed.
+ post_country — optional. string. Country part of user's post address.

+ post_index — optional. string. Index part of user's post address.

- post_region — optional. string. Region part of user's post address.

+ post_city — optional. string. City from post address.

+ post_street_address — optional. string. User's post address,
and for legal_entity or sole_trader:
+ iec — string. Industrial Enterprises Classifier aka "KPP". Used in Russia. For
legal_entity only.
- legal_name - string. User legal (juridical) name. For legal_entity only.

+ okpo_code - string, optional, 8 or 10 characters maximum. All-Russian Classifier of
Enterprises and Organizations. Used in Russia.

* registered_country — string. Country part of user's registered address.
* registered_index — string. Index part of user's registered address.

* registered_region — string. Region part of user's registered address.

- registered_city - string. City from registered address.

* registered_street_address — string. User's registered address.

- state_reg_num - string, optional, 15 characters maximum. State registration
number. E.g. EIN in USA, OGRN in Russia.

- tin — string. Taxpayer identification number.

response
{ "success": true }

errors

* 222 (Plugin not found) — when plugin 45 not available for user

Last update: October 23, 2020

User audit

API path: /user/audit.

checkin

This method is called when user has opened Ul.

response

"success": true

Last update: August 21, 2020

User audit log

API path: /user/audit/log.

audit_object type is JSON object:

"id": 1, // ID of the audit record

"user_id": 3, // Master user's ID

"subuser_id": 3, // ID of the subuser who made an action

"entry_category": "user", // Category of the entry on which an
action was made

"entry_id": null, // Nullable. ID of the entry on which an
action was made

"action": "login", // Action on entry

“payload”: null, // Nullable json-object. Additional
information about action

"host": "192.168.88.1", // Host from which an action was made.
IPv4 or IPv6

"user_agent": "Apache-HttpClient/4.1.1 (java 1.5)", // User
agent

"action_date": "2018-09-03 11:32:34" // Date and time of the
action

}

list
Gets list of audit records available for current user.
required subuser rights: admin (available only to master users)
parameters
« from - string. Include audit objects recorded after this date, e.g. 2014-087-01
00:00:00 .
* to - string. Include audits before this date, e.g. 2614-07-01 00:00:00 .

- subuser_ids - int[]. (optional) Include audits for specific subusers, e.g. [2, 3].

- actions - string]]. (optional) Include audits for specific actions only, e.g.
["user_checkin"] . Set of valid values is formed by combinations of entry
categories and actions.

+ limit — int. Pagination. Maximum number of audit records to return, e.g. 10.
- offset — int. Pagination. Get audits starting from, e.g. o.

- sort — string]]. (optional) Set of sort options. Each option is a pair of property name
and sorting direction, e.g. ["action_date=acs", "user=desc"] . Properties

available for sorting by:

— action

— action_date (sort only by date, not considering time part)

— action_datetime (sort by date including time)

— user (sort by user's (subuser) last+first+middle name, not by ID)
— host

If no sort param is specified, then sorting equivalent to option
["action_date=asc"] will be applied.

response

"success": true,
"list": [<audit_object>, ...]

Last update: August 21, 2020

User session

API path: /user/session.

renew
Prolongs current user session.

response

{ "success": true }

Last update: August 21, 2020

Delivery

API path: /user/session/delivery.

Calls to work with "delivery" type sessions. Those are special sessions to integrate
order (task) tracking functionality into external systems.

create

Create new user delivery session. In demo session allowed to create a new session only
if it not already exists.

required subuser rights: admin (available only to master users)

response

"success": true,
"value": "42fc7d3068cb98d233c3af749deed4a8d" // created session
hash key

}

errors

- 101 (In demo mode this function is disabled) — current session is demo but
weblocator session already exists.

+ 236 — Feature unavailable due to tariff restrictions

read

Return current user delivery session key.

response

"success": true,
"“value": <string> // session hash key

errors

+ 201 - Not found in database (if there is no delivery session)

Last update: October 23, 2020

Push token

APl path: /user/session/push_token.

bind
Binds Push token with current session.
parameters

- application (string) — Application ID, for now it's "navixy_iphone_viewer" or
"navixy_android_viewer"

+ token (string) — Push token

- category_filter (string) — Push notifications category filter, default is *

response
{ "success": true }

Using category_filter you can filter out unwanted notifications categories.
If category_filter equalsto * this means all categories are allowed.

Delimited with comma list means that allowed only listed categories i.e.

chat_message, history_rule.

Prepended with minus and delimited with comma list means that all categories are
allowed except given i.e. — history_task,history_rule.

POSSIBLE CATEGORIES:

+ chat_message — notification about new chat message

« history_rule - notifications related to rule actuation

* history_task — notifications related to tasks
* history_info — service information
* history_service_task — service task notifications

* history_work_status — work status notifications

delete

Deletes push token that bound with the session.

response

{ "success": true }

errors

General types only.

Last update: October 23, 2020

User sessions weblocator

API path: /user/sessions/weblocator .

create

Create new user weblocator session. In demo session allowed to create a new session
only if it not already exists.

required subuser rights: admin (available only to master users)
response
"success": true,

"value": "42fc7d3068cb98d233c3af749deed4a8d"” // created session
hash key

}

errors

+ 101 (In demo mode this function is disabled) - current session is demo but
weblocator session already exists.

+ 236 — Feature unavailable due to tariff restrictions

read
Return current user weblocator session key.

response

"success": true,
"value": <string> // session hash key

errors

+ 201 - Not found in database (if there is no weblocator session).

Last update: August 21, 2020

User settings

APl path: /user/settings.
CRUD actions for user settings.

settings type is JSON object:

{
"time_zone": "Europe/Amsterdam”, // ISO timezone id
"locale": "nl_NL", // locale code
"measurement_system": "metric” // measurement system
("metric", "imperial", "us" or "metric_gal_us")
"geocoder": "osm", // preferred geocoder type
("google", "yandex", "progorod", "osm" or "locationiq")
"route_provider": "google", // preferred route finding
provider ("google", "progorod" or "osrm")
"translit": false // true if sms notification
should be transliterated, false otherwise
}

balance_alert_settings type is JSON object:

{
"emails": ["emaill@example.com", "email2@example.com"] //
array of emails to send alert message about balance
/]
empty array means disclaimer of notifications
}
file_storage_settings type is JSON object:
{
"auto_overwrite": <true|false> // default - false,
}
read
Read current user's settings.
response
{
"success": true,
"settings": ${settings}, // JSON
object
"file_storage_settings": ${file_storage_settings}, // JSON

object

"balance_alert_settings": $S{balance_alert_settings}, // JSON

object

"first_user_balance_warning_period": "7d", // first
interval to send alert

"second_user_balance_warning_period": "2d" // second
interval to send alert
}

Where settings, balance_alert_settings and file_storage_settings described
above.

required subuser rights for balance_alert_settings and file_storage_settings fields:
admin (available only to master users)

update
Update current user's settings.
parameters

 time_zone - ISO timezone id
* locale - locale code

nons IlI n
’

* measurement_system — measurement system ("metric", "imperial”, "us" or

"metric_gal_us"). If field is not passed then default (metric) system will be used.

- geocoder — preferred geocoder type ("google", "yandex", "progorod", "osm" or
"locationiq")

- route_provider — preferred route finding provider ("google", "progorod" or "osrm"
- translit - true if sms notification should be transliterated, false otherwise
- balance_alert_settings — JSON object containing array of emails

- file_storage_settings - JSON object

required subuser rights for balance_alert_settings and file_storage_settings: admin
(available only to master users)

See examples above.

response

{ "success": true }

file_storage/update

Update current user's file storage settings

required subuser rights: admin (available only to master users)
parameters

+ file_storage_settings — JSON object.
errors

+ 13 - Operation not permitted - if user has insufficient rights

Last update: October 23, 2020

User Ul settings

API path: /user/settings/ui

The user interface settings are intended for storing settings of client applications that
use the API. One can imagine that this works similarly to the browser cache / local
storage mechanism. The feature is that long-term storage of these settings is provided
but not guaranteed - when the quota is exceeded, data could be deleted.

read

Read setting value by key.

parameters

key - string. Length should be between 1 and 50 is 50 symbols, should only contain
English letters, digits, '_' and '-'.

responses:
{
"success": true,
“value": "previously saved value"
}

When nonexistent key is provided:

{
"success": false,
"status": {
"code": 201,
"description”: "Not found in database"
}
}

errors

Standard errors

update

Set setting value.

parameters

key - string. Length should be between 1 and 50 symbols. Should only contain English
letters, digits, '_' and '-'. value - string. Length should be between 0 and 8192 symbols.

responses:

{ "success": true }

errors

« Standard errors

+ 268 - over quota. The amount of storage available for the user for these settings
has been exhausted. New settings cannot be added until the amount of stored data
has been reduced.

Last update: August 21, 2020

Check-ins

Check-ins are created using Mobile Tracker App (Android / i0S). They contain date/
time, address, coordinates and additional information (comment, photo, filled form)
which is provided by app user after pressing the "Check-in" in the tracker app. Using
check-ins field personnel can provide information to their HQ while on site. For example,
provide photo proof of the work done, or notify about a malfunction along with filled
form describing the problem.

Check-ins cannot be created using web API, so all actions are read-only.

Check-in object

"id": 1,

"marker_time": "2017-03-15 12:36:27",
"user_id": 111,

"tracker_id": 222,

"employee_id": 333,

"location": {

"lat": 56.5,
"lng": 60.5,
"address": "Moltkestrasse 32",
"precision": 150
b
"comment": "houston, we have a problem",
"files": [{

"id": 16,
"storage_id": 1,
"user_id": 12263,
"type": "image",
"created": "2017-09-06 11:54:28",
"uploaded": "2017-09-06 11:55:14",
"name" : "lala.jpg",
"size": 72594,
"mime_type": "image/png",
"metadata": {
"orientation": 1
b
"state": "uploaded",
"download_url": "https://static.navixy.com/file/d1l/1/0/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"

1
"form_id": 23423,
"form_label": "Service request form"

« id -int. Anid of a check-in.

https://play.google.com/store/apps/details?id=com.navixy.xgps.tracker&hl=ru
https://apps.apple.com/us/app/x-gps-tracker/id802887190

* marker_time - string date/time. Non-null. The time of check-in creation.
« user_id -int. Non-null. An id of the master user.
* tracker_id -int. Non-null. An id of the tracker which created this check-in.
« employee_id - optional int. An id of the employee assigned to the tracker.
+ location - non-null object. Location associated with this check-in marker.
+ address - string. Address of the location.
+ comment - optional string. A comment provided by app user.
« files - list of objects. Non-null. May be empty.
+ id -int. File id.
* storage_id -int. Storage id.
+ user_id -int. An id of the user.
* type - string enum. Can be "image" | "file".
+ created - string date/time. Date when file created.

* uploaded - string date/time. Date when file uploaded, can be null if file not yet
uploaded.

* name - string. A name of the file.

+ size int. File size in bytes. If file not uploaded, show maximum allowed size for
an upload.

* metadata - metadata object.
+ orientation -int. Image exif orientation.
+ state - string enum. Can be "created" | "in_progress" | "uploaded" | "deleted".
* download_url - string. Actual url at which file is available. Can be null if file not
yet uploaded.
« form_id -int. An id of the form which was sent along with a check-in, can be null.

« form_label - string. Label of the form which was sent along with a check-in, can be
null.

APl actions

APl path: /checkin.

read

Get check-in which id is equal to checkin_id .

required sub-user rights: employee_update .

parameters

description

checkin_id Id of the check-in entry. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/checkin/read"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "checkin_id":
1}

HTTP GET

https://api.navixy.com/v2/fsm/checkin/read?
hash=a6aa75587e5¢c59¢32d347da438505fc3&checkin_id=1

response
{
"success": true,
"value": {
"id": 1,

"marker_time": "2017-03-15 12:36:27",
"user_id": 111,

"tracker_id": 222,

"employee_id": 333,

"location": {

"lat": 56.5,

"lng": 60.5,

"address": "Moltkestrasse 32",
"precision": 150
b
"comment": "houston, we have a problem",
"files": [{

"id": 16,

"storage_id": 1,

"user_id": 12203,

"type": "image",

"created": "2017-09-06 11:54:28",
"uploaded": "2017-09-066 11:55:14",
"name": "lala.jpg",

"size": 72594,

"mime_type": "image/png",
"metadata”: {

"orientation”: 1
b

"state": "uploaded",

"download_url": "https://static.navixy.com/file/d1l/1/0/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"

H,
"form_id": 23423,
"form_label": "Service request form"
}
}
errors

+ 7 — Invalid parameters.

+ 204 - Entity not found — when the marker entry is not exists.

list
Gets marker entries on a map for trackers and for the specified time interval.
required sub-user rights: employee_update.

parameters

description type

trackers Optional. Array of tracker ids. All trackers must array of
not be deleted or blocked (if list_blocked=false).
If not specified, all available trackers will be
used as value.

from Optional. Start date/time for searching. date/tin

to Optional. End date/time for searching. Must be date/tin
after "from" date.

conditions Optional. Search conditions to apply to list. See array of
Search conditions. Allowed fields are

employee, location, marker_time, comment .

sort Optional, offset, default is 0. List of sort array of
expressions. See below.

location Optional, location with radius, inside which Locatiot
check-ins must reside example

{ "lat'

56.823°

"Ing"

../../commons/entity/search_conditions/

name

limit

offset

format

show_nearby_geo_entities

CONDITION FIELDS

Name

Type

description

Optional. Max number of records to return

Optional, offset (starting index of first returned
record), default is 0.

Optional. If empty, JSON will be returned.
Otherwise server will return file download in
specified format. Can be "pdf" or "xlsx"

Optional. If true, the call will search for places
and zones where the location of the check-in
falls and add their description to the response.

Comment

employee

tracker_id

marker_time

location

comment

form

SORT

number?

number

DateTime

string

string

number

id

address

template's id

type

60.594"

"radius

int

int

string

boolean

It's a set of sort options. Each option is a pair of field name and sorting direction, e.g.

["location=asc",

"employee=desc", "marker_time=desc"] .

SORT FIELDS

Comment

employee string? full name
tracker_id number
marker_time DateTime
location string address
comment string
form string label
example
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/checkin/list"' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "trackers":
[616384,345623], "from": "2020-08-85 03:06:00", "to": "2020-89-05
03:00:00", "offset": 206, "limit": 100, "format": "xlsx"}'

response

"success": true,
"list": [<checkin>],
"count": 22

« list - list of check-in objects.

* count -int. Total number of check-ins (ignoring offset and limit).

When parameter show_nearby_geo_entities is set, <checkin> will contain additional
fields places and zones.

"places": [{
"id": integer,
"label": string

"zones": [{
"id": integer,

"label": string
} ’ "']

errors

+ 7 — Invalid parameters.

+ 211 - Requested time span is too big (more than maxReportTimeSpan config
option).

+ 217 — The list contains non-existent entities — if one of the specified trackers does
not exist, is blocked or doesn't have required tariff features.

+ 221 - Device limit exceeded (if device limit set for the user's dealer has been
exceeded).
delete
Deletes check-ins with the specified id-s.

required sub-user rights: checkin_update .

parameters

description type
checkin_ids List of check-in ids. array of int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/checkin/delete"’ \
-H '"Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b",
"checkin_ids": [2132,4533]}"

HTTP GET

https://api.navixy.com/v2/fsm/checkin/delete?
hash=a6aa75587e5c59¢c32d347da438505fc3&checkin_ids=[2132,4533]

response

"success": true

errors

+ 7 — Invalid parameters.

+ 201 - Not found in the database - check-ins with the specified ids don't exist, or their
corresponding trackers are not available to current sub-user.

Last update: March 2, 2021

Departments

Department is essentially just a group of employees. They can be assigned to
departments by specifying non-null department_id .

Department object

{
"id": 222,
"label": "Drivers",
"location": {
"lat": 46.9,
"lng": 7.4,
"address": "Rosenweg 3",
"radius": 150
}
}

* id -int. Anid of department.
+ label - string. Name of department.

« location - optional object. Location associated with these departments. Should be
valid or null.

* address - string. Address of the location.

* radius -int. Radius of location zone in meters.

APl actions

API base path: /department .

list

Gets all departments belonging to user.

../employee/

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/department/list"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b"}’

HTTP GET

https://api.navixy.com/v2/fsm/department/list?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 222,
"label": "Drivers",
"location": {
"lat": 46.9,
"lng": 7.4,
"address": "Rosenweg 3",
"radius": 150
}
]
}
errors

+ 7 — Invalid parameters.

+ 211 - Requested time span is too big (more than maxReportTimeSpan config
option).

+ 217 — The list contains non-existent entities — if one of the specified trackers does
not exist, is blocked or doesn't have required tariff features.

+ 221 - Device limit exceeded (if device limit set for the user’s dealer has been
exceeded).

create
Creates a new department with specified parameters.

required sub-user rights: employee_update.

parameters

name description type

department An department object without id field. JSON object
example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/department/create’ \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d64da2celaf111b", "department":
{"label": "My Department", "location": {"lat": 46.9, "lng": 7.4,
"address": "Rosenweg 3", "radius": 50}}'

response

"success": true,
"id": 111

* id -int. Anid of the created department.

errors

+ 7 — Invalid parameters.

+ 211 - Requested time span is too big (more than maxReportTimeSpan config
option).

+ 217 - The list contains non-existent entities — if one of the specified trackers does
not exist, is blocked or doesn't have required tariff features.

*+ 221 - Device limit exceeded (if device limit set for the user’s dealer has been
exceeded).
update
Updates existing department with a new specified parameters.

required sub-user rights: employee_update .

parameters

name description type

department An department object. JSON object
example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/department/update’ \
-H 'Content-Type: application/json' \
-d "{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "department"”
{"id": 111, "label": "My Department", "location": {"lat": 46.9,
"lng": 7.4, "address": "Rosenweg 3", "radius": 50}}'

response
{ "success": true }

errors

+ 201 - Not found in the database (if there is no department with specified id).

delete
Deletes department with the specified id.
required sub-user rights: employee_update .

parameters

name description type

department_id An id of the department. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/department/delete’ \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9dB4da2celaf111b",
"department_id": 111}

HTTP GET

https://api.navixy.com/v2/fsm/department/delete?
hash=a6aa75587e5¢c59¢32d347da438505fc3&department_id=111

response
{ "success": true }

errors

+ 201 - Not found in the database (if there is no department with specified id).

Last update: November 25, 2020

Working with employees

Employees are used to represent people working at one's organization. They can be
linked with other entities such as trackers, vehicles, places, etc.

Employee object

"id": 222,
"tracker_id": null,
"first_name": "John",
"middle_name" : "Jane",
"last_name": "Smith",
"email": "smith@example.com",
"phone": "442671111111",
"driver_license_number": "SKIMP407952HJ9GK 06",
"driver_license_cats": "C",
"driver_license_valid_till": "2018-061-01",
"hardware_key": null,
"icon_id" : 55,
"avatar_file_name": null,
"department_id": null,
"location": {

"lat": 52.5,

"lng": 13.4,

"address": "Engeldamm 18"
b
"personnel_number": "1059236",
"tags": [1,2],
"fuel_consumption": 8.2,
"fuel_cost": 27.1

« id -int. Internal ID. Can be passed as null only for "create" action.

* tracker_id -int. Anid of the tracker currently assigned to this employee. null
means no tracker assigned.

« first_name - string. First name. Cannot be empty. Max 100 characters.

* middle_name - string. Middle name. Can be empty, cannot be null. Max 100
characters.

+ last_name - string. Last name. Can be empty, cannot be null. Max 100 characters.

+ email - string. Employee's email. Must be valid email address. Can be empty,
cannot be null. Max 100 characters.

* phone - string. Employee's phone without "+" sign. Can be empty, cannot be null.
Max 32 characters.

* driver_license_number - string. Driver license number. Can be empty, cannot be
null. Max 32 characters.

+ driver_license_cats - string. Driver license categories. Max 32 characters.

« driver_license_valid_till - string date (yyyy-MM-dd). Date till a driver license
valid. Can be null.

* hardware_key - string. A hardware key. Can be null. Max 64 characters.
* icon_id -int. Anicon id. Can be null, can only be updated via avatar/assign.

+ avatar_file_name - string. A name of the updated avatar file. Nullable, can only be
updated via avatar/upload.

+ department_id -int. An id of the department to which employee assigned. Can be
null.

+ location - optional object. Location associated with this employee, should be valid
or null.

+ address - string. Address of the location.
* personnel_number - optional string. Max length is 15.
+ tags - array of int. List of tag ids.

« fuel_consumption - decimal. Fuel consumption rate of employee's vehicle,
measured in liters per 100 km.

« fuel_cost - decimal. The cost of a liter of fuel used by employee's vehicle.

APl actions

APl base path: /employee.

list
Gets all employees belonging to user.

response

"success": true,
"list": [<employee>]

+ list - alist of employee objects.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/employee/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/fsm/employee/list?
hash=a6aa75587e5¢c59c32d347da438505fc3

errors

General types only.

create

Create new employee. If tracker id is specified, tracker's label will be changed to
employee full name.

required sub-user rights: employee_update.

parameters

description

employee An employee object without id field. Non-null. JSON
object
force_reassign if true, specified tracker will be assigned to Boolean

employee even if it already assigned to another

example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/employee/create’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "employee":

{"tracker_id": 625987, "first_name": "John", "middle_name":
"Jane", "last_name": "Smith", "email": "smith@example.com",
"phone": "442071111111", "driver_license_number":
"SKIMP407952HJ9GK ©6", "driver_license_cats": "C",
"driver_license_valid_till": "2018-01-061", "hardware_key": null,
"icon_id" : 55, "avatar_file_name": null, "department_id": null,

"location": {"lat": 52.5, "lng": 13.4, "address": "Engeldamm 18"},
"personnel_number": "1059236", "tags": [1,2]}'

response

"success": true,
"id": 111 //id of the created employee

« id -int. An id of the created employee.
errors
+ 247 - Entity already exists, if tracker_id !=null and exists an employee that already
bound to this tracker_id.
read

Gets employee by its id.

parameters

description

employee_id Id of an employee. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/employee/read’' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d64da2celaf111b",
"employee_id": 111}

HTTP GET

https://api.navixy.com/v2/fsm/employee/read?
hash=a6aa75587e5c59¢c32d347da438505fc3&employee_id=111

response
{

"success": true,
"value": {
"id": 222,
"tracker_id": null,
"first_name": "John",
"middle_name": "Jane",
"last_name": "Smith",
"email": "smith@example.com",

"phone": "442071111111",

"driver_license_number": "SKIMP407952HJ9GK 06"
"driver_license_cats": "C",
"driver_license_valid_till": "2618-61-61",
"hardware_key": null,

"icon_id" : 55,

"avatar_file_name": null,

"department_id": null,

"location": {

"lat": 52.5,

"Ing": 13.4,

"address": "Engeldamm 18"
be
"personnel_number": "1859236",

“tags": [1,2],
“fuel_consumption": 14.2,
"fuel_cost": 9.99

+ value - an employee object.
errors

+ 201 - Not found in the database (if there is no employee with such an id).

update

Update existing employee. If it had tracker assigned and tracker id had changed, tracker
label will be prepended with "Deleted ". New tracker's label will be changed to employee
full name.

required sub-user rights: employee_update.
parameters

- employee — an employee object Non-null.

- force_reassign - if true, specified tracker will be assigned to employee even if it
already assigned to another | name | description | type | | :---| - | ;- | | employee |
An employee object with id field. Non-null. | JSON object | | force_reassign | if true,
specified tracker will be assigned to employee even if it already assigned to another
| Boolean |

example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/employee/update’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "employee":
{"employee_id": 111, "tracker_id": 625987, "first_name": "John",
"middle_name": "Jane", "last_name": "Smith", "email":
"smith@example.com", "phone": "442071111111",
"driver_license_number": "SKIMP467952HJ9GK 06",
"driver_license_cats": "C", "driver_license_valid_till":
"2018-01-01", "hardware_key": null, "icon_id" : 55,
"avatar_file_name": null, "department_id": null, "location":
{"lat": 52.5, "1lng": 13.4, "address": "Engeldamm 18"},
"personnel_number": "1059236", "tags": [1,2]}'

response
{ "success": true }

errors

+ 201 - Not found in the database (if there is no employee with such an id).

+ 247 - Entity already exists, if tracker_id !=null and exists an employee that already
bound to this tracker_id.
delete

Deletes an employee with the specified id. If it had tracker assigned, tracker label will
be prepended with "Deleted "

required sub-user rights: employee_update.

parameters

description

employee_id Id of an employee to delete. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/employee/delete’ \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9dB4da2celaf111b",
"employee_id": 111}

HTTP GET

https://api.navixy.com/v2/fsm/employee/delete?
hash=a6aa75587e5c59¢32d347da438505fc3&employee_id=111

response
{ "success": true }

errors

+ 201 - Not found in the database (if there is no employee with such an id).

batch_convert

Convert batch of tab-delimited employees and return list of checked employees with
errors.

Required sub-user rights: employee_update .

parameters

description type
batch Batch of tab-delimited employees. string
file_id Preloaded file ID. string
fields Optional. Array of field names. Default is array of
["first_name", "middle_name", "last_name", string
"email", "phone"].
geocoder Geocoder type. string
default_radius Optional. Radius for point in meters. Default is 100. int

«If file_id is set — batch parameter will be ignored.

Note that employees created this way must have either phone or email specified.

response
{

"success": true,

"list": [{
"success": true,
"value": {
"id": 222,
"tracker_id": null,
“first_name": "John",
"middle_name": "Jane",
"last_name": "Smith",
"email": "smith@example.com",

"phone": "442671111111",
"driver_license_number": "SKIMP467952HJ9GK 06",
"driver_license_cats": "C",
"driver_license_valid_till": "2018-61-01",
"hardware_key": null,

"icon_id" : 55,

"avatar_file_name": null,

"department_id": null,

"location": {

"lat": 52.5,

“lng": 13.4,

"address": "Engeldamm 18"
o
"personnel_number": "1059236",
"tags": [1,2],

"fuel_consumption": 10.0,
"fuel_cost": 0.94,
"“errors": <array_of_objects>

H

"limit_exceeded": false

« list - list of checked employees.
« errors -optional array of errors.

+ limit_exceeded - boolean. true if given batch constrained by a limit.
errors

* 234 - (Invalid data format).

Last update: February 11, 2021

Changing avatar

Avatars can't be changed through /employee/update, you must use either assign (to
set avatar to one of preset icons), or upload (to upload your own image).

APl actions

APl base path: /employee/avatar .

assign

Assign icon_id (from standard icon set) to this employee. The icon_id can be null
- this means that uploaded avatar should be used instead of icon.

required sub-user rights: employee_update.

parameters
name description type
employee_id Id of the employee to whom the icon will assign. int
icon_id Id of the icon. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/employee/avatar/assign’
\

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b",
"employee_id": 2132, "icon_id": 3654}

HTTP GET
https://api.navixy.com/v2/fsm/employee/avatar/assign?
hash=a6aa75587e5c59¢c32d347da438505fc3&employee_id=2132&icon_id=3654

response

{ "success": true }

errors

+ 201 - Not found in the database (when employee with employee_id not found).

upload

Uploads avatar image for specified employee. Then it will be available from /employee/
avatars/ e.qg. https://api.navixy.com/v2/fsm/static/employee/avatars/
abcdef123456789.png .

required sub-user rights: employee_update.
avatar_file_name returned in response and will be returned from /employee/list.

MUST be a POST multipart request (multipart/form-data), with one of the parts being an
image file upload (with the name file).

File part mime type must be one of:

- image/jpeg or image/pjpeg.

+ image/png.
- image/gif.

parameters
name description type
employee_id Id of the employee to whom the icon will assign. int
file Image file. string
redirect_target Optional. URL to redirect. If passed returns redirect to ? string

response=.

response

{

"success": true,
"value": "picture.png"

+ value - string. Uploaded file name.

errors

+ 201 - Not found in the database (when employee with employee_id not found).
+ 233 - No data file (if file part not passed).
+ 234 - Invalid data format (if passed file with unexpected mime type).

+ 254 - Cannot save file (on some file system errors).

Last update: November 16, 2020

About forms

Forms used to provide additional information, such as user name, phone, delivery date,
etc. upon task completion or check-in from i0OS/Android mobile tracker app. Forms can
be attached to tasks. If form attached to task, this task cannot be completed without
form submission.

« Each form must be created from template, read more at Templates
* For description of <form_field> and <field_value>, see Form fields and values

- Using web API, it's now possible to only attach/fill forms with tasks (checkin forms
are created through Android/iOS tracker applications). See Task form actions to use

forms with tasks.

Form object

"id": 2,
"label": "Order form",
"fields": |
{
"id": "111-aaa-whatever",
"label": "Name",
"description”: "Your full name",
"required": true,
"min_length": 5,
"max_length": 255,
"type": "text"
}

I,
"created": "2017-03-15 12:36:27",

"submit_in_zone": true,
"task_id": 1,
"template_id": 1,
"values": {
"111-aaa-whatever": {
"type": "text",
"“value": "John Doe"
}

b
"submitted": "2017-63-21 18:40:54",

"submit_location": {
“lat": 11.0,
"lng": 22.0,
"address": "Wall Street, NY"

template/
field-types/
../task/form/

* id -int. Form unique id.
+ label - string. User-defined form label, from 1 to 100 characters.
« fields - array of multiple form_field objects.

* created - string date/time. Date when this form created (or attached to the task).
The read-only field.

* submit_in_zone - boolean. If true, form can be submitted only in task zone.
« task_id -int. Anid of the task to which this form attached.

* template_id -int. An id of the form template on which this form based. Can be null
if template deleted.

+ values - a map with field ids as keys and field_value objects as values. Can be null
if form not filled.

+ key - string. Key used to link field and its corresponding value.
+ submitted - string date/time. Date when form values last submitted.

« submit_location - location at which form values last submitted.

Form file object

"id": 16,

"storage_id": 1,

"user_id": 12263,

"type": "image",

"created": "2017-09-06 11:54:28",
"uploaded": "20817-09-06 11:55:14",
"name": "lala.jpg",

"size": 72594,

"mime_type": "image/png",
"metadata": <metadata_object>,
"state": "uploaded",

"download_url": "https://static.navixy.com/file/d1/1/6/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"
}
+ id -int. File id.
* type - string enum. Can be "image" or "file".
+ created - string date/time. Date when file created.

* uploaded - string date/time. Date when file uploaded. Can be null if file not yet
uploaded.

field-types/
field-types/

* name - string. A filename.

+ size -int. Size in bytes. If file not uploaded, show maximum allowed size for the
upload.

+ metadata - nullable metadata object.
+ state - string enum. Can be "created" | "in_progress" | "uploaded" | "deleted".

+ download_url - string. Actual url at which file is available. Can be null if file not yet
uploaded.

APl actions

APl path: /form.

read

Gets form by an id.

parameters
name description type
id Id of the form. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/read"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "id": 2}’

HTTP GET

https://api.navixy.com/v2/fsm/form/read?
hash=a6aa75587e5c59¢c32d347da438505fc3&id=2

response

"success": true,
"value": {

"id": 2,
"label": "Order form",
"fields": [
{
"id": "111-aaa-whatever",

"label": "Name",

"description”: "Your full name",
"required": true,
"min_length": 5,
"max_length": 255,
"type": "text"
}
I,
"created": "2017-03-15 12:36:27",
"submit_in_zone": true,
"task_id": 1,
"template_id": 1,
"values": {
"111-aaa-whatever": {
"type": "text",
"value": "John Doe"
}

}
"submitted": "2017-03-21 18:48:54",

"submit_location": {
"lat": 11.9,
"lng": 22.0,
"address": "Wall Street, NY"
}
}
"files": [{
"id": 16,
"storage_id": 1,
"user_id": 12203,
"type": "image",
"created": "2017-09-066 11:54:28",
"uploaded": "28617-09-06 11:55:14",
"name"” : "lala.jpg",
"size": 72594,
"mime_type": "image/png",
"metadata": {
"orientation”: 1
b
"state": "uploaded",
"download_url": "https://static.navixy.com/file/d1/1/0/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"
}]
}

+ value - A form object.

« files - list of form_file objects. Files used in values of this form. Can be null or
empty.

errors

+ 201 - Not found in the database (if there is no form with such an id).

download

Downloads form as a file by an id.

parameters

name description type

id Id of the form. int

format File format. Can be "pdf" or "xIsx". string enum
examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/download"' \
-H '"Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "id": 2,
“format": "pdf"}'

HTTP GET

https://api.navixy.com/v2/fsm/form/download?
hash=a6aa75587e5c59c32d347da438505fc3&id=2&format=pdf

response
Regular file download, or JSON with an error.
errors

+ 201 - Not found in the database (if there is no form with such an id).

Last update: November 25, 2020

Form fields and values

Every form (and form template) contains an ordered list of fields of various types. Field
type defines how user input elements will look like, and how user input will be validated.

Every field has a set of common parameters, which are the same for all field types, and
type-specific parameters, which define specific style and validation constraints. Both
common and type-specific parameters contained as fields in the JSON object.

Field values for submitted form stored separately as JSON objects. The contents of
value JSON objects are entirely field type-specific.

COMMON FIELD PARAMETERS:

{
"id": "Text-1",
"label"”: "Name",
"description”: "Your full name",
"required": true,
“type": "text"
}

- id - arbitrary alphanumeric string (1 to 19 characters). Unique across current
form's fields, used to link with values and its "parent” in template form.

+ label - string. User-defined label, shown as field header, 1 to 100 printable
characters.

+ description - string. Field description, shown in smaller text under the header, 1 to
512 printable characters.

* required - boolean. If true, form cannot be submitted without filling this field
with valid value.

* type - string. Determines field type.

Text field
type: text.
Multiline auto-expanding text field.

Note 1: when value contains empty string, it's considered empty, and thus valid when
required: false, min_length != 0.

Note 2: combination required: true, min_length: @ is not allowed.

type-specific parameters:

"min_length": 5,
"max_length": 255

* min_length -int. Minimum allowed length, from 0 to 1024.

+ max_length -int. Maximum allowed length 1 to 1024.
value object:

"type": "text",
"value": "text field value"

+ value - string. What was entered the text field.

Checkbox group
type: checkbox_group .
Group of checkboxes.

Note 1: when zero checkboxes selected, values considered empty, and thus valid when
required: false, min_checked != 0.

Note 2: combination required: true, min_checked: @ is not allowed.

TYPE-SPECIFIC PARAMETERS:

{
"min_checked": 0,
"max_checked": 3,
"group": [{
"label” : "I agree to TOS"
]
}

* min_checked -int. Minimum allowed checked positions, 0 to "group".size - 1.

+ max_checked -int. Maximum allowed checked positions, 1 to "group”.size - 1.

VALUE OBJECT:
{
"type": "checkbox_group",
"values": [true]
}

+ values - array of boolean. They are in the same order as fields in group.

Dropdown field
type: dropdown .

Dropdown menu for choosing one option.

TYPE-SPECIFIC PARAMETERS:

{
"options": [
{
"label" : "John"
be
{
"label"” : "Alice"
}
]
}
VALUE OBJECT:
{
"type": "dropdown",
"value_index": 1
}

* value_index - int. Zero-based index of value from "options".

Radio button group
type: radio_group.
A group of radio buttons. Only one option is selectable.

TYPE-SPECIFIC PARAMETERS:

{
"options": [
{
"label" : "John"
b
{
"label” : "Alice"
}
]
}
VALUE OBJECT:
{

"type": "radio_group",

"value_index": 1

* value_index - int. Zero-based index of value from "options".

Date picker
type: date.

A date picker.

TYPE-SPECIFIC PARAMETERS:

"disable_future": false,
"disable_past": true

* disable_future - boolean. If true, date from the future cannot be selected.

+ disable_past - boolean. If true, date from the past cannot be selected.

VALUE OBJECT:

"type": "date",
"value": "2017-03-14"

+ value - string date/time.

Rating
type: rating.
Rating with "stars". Zero stars not allowed.

TYPE-SPECIFIC PARAMETERS:

"max_stars": 5

* max_stars -int. Max number of stars to select from.

VALUE OBJECT:

"type": "rating",

"value": 3

« value -int. Number of stars selected. Cannot be more than max_stars.

File
type: file.
File attachment. For example, document or spreadsheet.

TYPE-SPECIFIC PARAMETERS:

{
"max_file_size": 65536,
"min_file_size": 128,
"allowed_extensions": ["x1s", "doc"]
}

« max_file_size -int. Max file size, bytes, no more than 16 Mb.
* min_file_size -int. Minimum file size, bytes.

+ allowed_extensions - array of string enum. List of allowed file extensions, up to 16
items, cannot be empty, but can be null, which means "no extension limits".

VALUE OBJECT:

"type": "file",
"file_ids": [3345345]

« file_ids - array of int. Ids of the file which should be attached to this form field as
value. Files must be uploaded before form submission.

Photo

type: photo.

Photograph attachment.

TYPE-SPECIFIC PARAMETERS:

{

"max_files": 2

}

+ max_files -int. Maximum number of photos to attach, up to 6.

VALUE OBJECT:

"type": "photo",
"file_ids": [3345345, 534534534]

« file_ids - array of int. Ids of the files which should be attached to this form field
as value. Files must be uploaded before form submission. Only image files allowed.

Signature
type: signature.

A small image of customer's signature (usually obtained via writing on screen with a
stylus).

TYPE-SPECIFIC PARAMETERS:

* there are no type-specific parameters.

VALUE OBJECT:

"type": "file",
"file_id": 3345345

« file_id -int. An id of the file which should be attached to this form field as value.
File must be uploaded before form submission.
Separator
type: separator.

Cosmetic, just to show header. Doesn't contain any actual value. Always filled and valid.
Cannot be required.

Last update: November 16, 2020

Form templates

Form is a "one-shot" entity; after it was filled by someone, it cannot be reused. It's
stored along with filled fields for future reference. Usually people need to fill forms with
the same fields over an over again, so forms created on the basis of form templates. It's
similar to paper forms: each paper form can be filled only once, but there's an electronic
document, a template, on basis of which all paper forms printed.

The reason for such API design is that template fields can be changed over time
(deleted, removed, reordered, etc)

and it should not affect already filled forms. By separating filled forms and templates,
one can always view filled form in exactly same state regardless of how template
changed.

User can assign form to the task or checkin by choosing template without the need to
create all form fields every time.

Form template object

"id": 1,
"label": "Order form",
"fields":[{
"id": "Text-1",
"label": "Name",
"description”: "Your full name",
"required”: true,
"type": "text",
"min_length": 5,
"max_length": 255
L
“created": "2017-03-15 12:36:27",
"submit_in_zone": true,
"updated”: "2017-03-16 15:22:53",
"default": false

« id -int. Anid of a template.

+ label - string. User-defined template label, from 1 to 100 characters.

+ fields - array of multiple form_field objects.

« created - string date/time. Date when this template created. The read-only field.

* submit_in_zone - boolean. If true, form can be submitted only in task zone.

../field-types/

+ updated - string date/time. Date when this template last modified. The read-only
field.

« default - boolean. This form will be chosen default for all new tasks with form if

true.

APl actions

API| base path: /form/template .

list
Gets all form templates belonging to current master user.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/template/list"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/fsm/form/template/list?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response
{
"success": true,
"list":[{
id" 1,
"label": "Order form",
"fields":[{

“id": "Text-1",
"label": "Name",
"description”: "Your full name",
"required": true,
"type": "text",
"“min_length": 5,
"max_length": 255
+H,

"“created": "2017-03-15 12:36:27",

“submit_in_zone": true,

"updated": "20817-03-16 15:22:53",

"default”: false

}]

+ list - ordered array of form_template objects.

errors

General types only.

Create
Creates new form template.
required sub-user rights: form_template_update .

parameters

description

template Non-null form template object without id, created, JSON
updated fields. object
example
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/template/create’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "template":
{"label": "Order form", "fields": [{"id": "Text-1", "label":
"Name", "description”: "Your full name", "required": true, "type":
"text", "min_length": 5, "max_length": 255}], "submit_in_zone":
true, "default": false}}'

response

"success": true,
"id": 111

* id -int. Anid of the created form template.
errors

+ 101 - In demo mode this function disabled (if current user has "demo" flag).

read

Gets form template belonging to current master user by specified id.

parameters

description

template_id Id of the form template. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/template/read' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b",
"template_id": 111}"'

HTTP GET

https://api.navixy.com/v2/fsm/form/template/read?
hash=a6aa75587e5c59c32d347da438505fc3&template_id=111

response
{
"success": true,
"list":[{
"id": 1,
"label": "Order form",
"fields": [{

"id": "Text-1",

"label": "Name",

"description": "Your full name",
"required": true,

"type": "text",

"min_length": 5,

"max_length": 255

Bl
"created": "2017-03-15 12:36:27",

"submit_in_zone": true,
"updated": "2017-03-16 15:22:53",
"default": false

}H

« list - ordered array of form_template objects.

errors

- 201 - Not found in the database (if there is no template with such an id).

update
Updates existing form template.
required sub-user rights: form_template_update.

parameters

description

template Non-null form template object without created, JSON
updated fields. object
example
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/template/update’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "template":
{"id": 111, label": "Order form", "fields": [{"id": "Text-1",
"label": "Name", "description": "Your full name", "required":
true, "type": "text", "min_length": 5, "max_length": 255}],
"submit_in_zone": true, "default": false}}'

response
{ "success": true }

errors

+ 201 - Not found in the database (if template with the specified id does not exist).

+ 101 - In demo mode this function disabled (if current user has "demo" flag).

delete
Deletes form template.
required sub-user rights: form_template_update.

parameters

name description type

template_id Id of the form template. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/template/delete’ \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9dB4da2celaf111b",

"template_id": 111}

HTTP GET

https://api.navixy.com/v2/fsm/form/template/delete?
hash=a6aa75587e5c59¢32d347da438505fc3&template_id=111

response
{ "success": true }

errors

+ 201 - Not found in the database (if template with the specified id does not exist).

+ 101 - In demo mode this function disabled (if current user has "demo" flag).

stats/read
Returns template usage statistics.

required sub-user rights: none

parameters
name description type
template_id Id of the form template. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/form/template/stats/
read' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d64da2celaf111b",
"template_id": 111}"'

HTTP GET

https://api.navixy.com/v2/fsm/form/template/stats/read?
hash=a6aa75587e5c59c32d347da438505fc3&template_id=111

response

{

"success": true,

"tasks": {
"unassigned": O,
"assigned": 6,
"done": 9,
"failed": 9,
"delayed": 9,
"arrived": ©
"faulty": @

’

o
"scheduled": 2

+ tasks - maps task status to number of tasks with this status which use specified
template.

+ scheduled -int. Number of task schedules using this template.
errors

+ 201 - Not found in the database (if template with the specified id does not exist).

Last update: November 25, 2020

Working with places

"Places" are business-specific points of interest like shops, delivery points, warehouses,
etc - which are visited by user's employees. Place entities can be extended with custom
fields to make them even more useful.

In case an event happened at the place, in various reports name of the place will be
specified after the address.

If there's an employee assigned to a Mobile Tracker App (Android /i0S), and a place
has a custom field of type "responsible employee", such place will be available in the
mobile app to view. Thus, field employee can view all places assigned to him to visit
them, etc.

Place object

{
"id": 1,
"icon_id" : 55,
"avatar_file_name": null,
"location": {
"lat": 52.366,
"lng": 4.895,
"address": "730 5th Ave, New York, NY 1060619, Unites
States",
"radius": 500
b
"fields": {
"131312" : {
"type": "text",
"value": "I love text!"
}
o
"label": "Crown Building",
"description”: "Here we buy our goods",
"tags": [1, 2 1],
"external_id": "1"
}

* id -int. Anid of a place.
« icon_id - optional int. Can be 1 to 255. Can only be updated via avatar/assign.
« avatar_file_name - optional string. Name of the avatar file. Can be null.

+ fields - optional object. A map, each key of which is a custom field id as a string.
See entity/fields

+ label - string. The name of the place.

../../commons/entity/fields/
../../commons/entity/fields/
../employee
https://play.google.com/store/apps/details?id=com.navixy.xgps.tracker&hl=ru
https://apps.apple.com/us/app/x-gps-tracker/id802887190
avatar/
../../commons/entity/fields/

+ description - optional string. Description of the place.

+ tags - optional array of int. A list of tag_ids. Non-empty.

+ external_id - optional string. Max length 32.

APl actions

APl base path: /place.

read

Gets place by ID.

parameters

description type
place_id ID of the place. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/place/read’

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d64da2celaf111b",

122304}
HTTP GET

https://api.navixy.com/v2/fsm/place/read?

hash=a6aa75587e5c59c32d347da438505fc3&place_id=122304

response
{
"success": true,
"value": {
"id": 1,
"icon_id" : 55,

"avatar_file_name": null,
"location": {
"lat": 40.773998,
"lng": -73.66003,

"address": "730 5th Ave, New York,

States",
"radius": 50
b
"fields": {

NY 106619,

\

"place_id":

Unites

"131312" : {
"type": "text",

"value": "I love text!"
}
}
"label": "Crown Building",
"description": "Here we buy our goods",
"tags": [1, 2 1,
"external_id": "1"
}
}
errors

- 201 (Not found in the database) - if there is no place with such ID.

list

Get places belonging to user.

parameters

description type
place_ids Optional. List of place IDs. array of
int
filter Optional. Filter for all built-in and custom fields. If used string

with conditions, both filter and conditions must match
for every returned place.

conditions Optional. Search conditions to apply to list. Array of array of
search conditions, see Search conditions. objects
order_by Optional. Built-in or custom field according to which string

output should be sorted. Entity field name, e.g "label"
(builtin) or "123" (field id as string, see entity/.

ascending Optional. If false — descending order. boolean

limit Optional. Limit. int

offset Optional. offset, default is 0. int

../../commons/entity/search_conditions/
../../commons/entity/

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/place/list" \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/fsm/place/list?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 1,
"icon_id" : 55,

"avatar_file_name": null,
"location": {
"lat": 40.773998,
"lng": -73.66003,
"address": "730 5th Ave, New York, NY 10019,
States",
"radius": 50
b
"fields": {
"131312" : {
“type": "text",
“value": "I love text!"
}
b
"label": "Crown Building",
"description"”: "Here we buy our goods",
"tags": [1, 2 1,
"external_id": "1"

1
“count": 1
+ count -int. Found places count.
errors

General types only.

create
Creates new place.

required sub-user rights: place_update.

Unites

parameters

description

place A place object without id field. JSON
object
ignore_missing_fields Optional (default is false). If true, place can boolean

be created even without all required custom
fields.

example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/place/read’ \

-H '"Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "place":
{"icon_id" : 55, "avatar_file_name": null, "location": {"lat":
40.773998, "lng": -73.66003, "address": "730 5th Ave, New York, NY
10019, Unites States", "radius": 50}, "fields": {"131312":
{"type": "text", "value": "I love text!"}} "label": "Crown

Building", "description": "Here we buy our goods", "tags": [1, 2],
"external_id": "1"}'

response
{

"success": true,
"id": 111
* id -int. An ID of the created place.
errors

+ 268 (Over quota) - if the user's quota for places exceeded.

update
Updates existing place.

required sub-user rights: place_update.

parameters

name description

place A place object. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/place/update’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "place":
{"id": 111, "icon_id" : 55, "avatar_file_name": null, "location":
{"lat": 40.773998, "lng": -73.66003, "address": "730 5th Ave, New
York, NY 10019, Unites States", "radius": 50}, "fields":
{"131312": {"type": "text", "value": "I love text!"}} "label":

"Crown Building", "description": "Here we buy our goods", "tags":
[1, 2], "external_id": "1"}'
response

{ "success": true }

errors

+ 201 (Not found in the database) - if there is no place with such ID.

delete
Deletes place with the specified ID.
required sub-user rights: place_update.

parameters

description

place_id ID of the place to delete. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/place/delete’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "place_id":
122304}

HTTP GET

https://api.navixy.com/v2/fsm/place/delete?
hash=a6aa75587e5c59¢32d347da438505fc3&place_id=122304

response
{ "success": true }

errors

+ 201 (Not found in the database) - if there is no place with such ID.

batch_convert
Converts batch of tab-delimited places and return list of checked places with errors.

Required sub-user rights: place_update.

parameters

name description type

batch Batch of tab-delimited places. string

file_id Preloaded file ID. string

fields Optional. Array of field names, default is array of
["1label", "address", "lat", "lng", "radius", strings
"description", "tags"].

geocoder Geocoder type. string

default_radius Optional. Radius for point in meters. Default is 100. int

If file_id is set — batch parameter will be ignored.

response

"success": true,
"list": [{
"id": 1,
"icon_id" : 55,
"avatar_file_name": null,
"location": {
"lat": 40.773998,
"lng": -73.66003,
"address": "730 5th Ave, New York, NY 10019, Unites
States",
“radius": 50
o
"fields": {
"131312" : {
"type": "text",
"value": "I love text!"
}

}
"label": "Crown Building",

"description”: "Here we buy our goods",
"tags": [1, 2],

"external_id": "1"

"errors": <array_of_objects>,
"tag_names": <array_of_strings>

H,

"limit_exceeded": false

+ list - alist of objects.
« errors - optional array of objects. Errors found during check.

+ tag_names - optional array of strings. Tag names of the place.
+ limit_exceeded - boolean. true if given batch constrained by a limit.
errors

+ 234 (Invalid data format).

upload
Upload places.
Required sub-user rights: place_update.

MUST be a POST multipart request (multipart/form-data), with one of the parts being a
CSV file upload (with the name "file").

CSV column separator is ;, columns header required -

label;address;lat;lng;radius;external_id;description

parameters
name description type
file A CSV file upload containing places data. File
upload
error_policy ignore or fail string
duplicate_policy skip or update or fail, belongs only to string
external_id duplicates
default_radius Optional, radius for point, meters, default is 100. int
geocoder Geocoder type. string
redirect_target Optional URL to redirect. If redirect_target passed string
return redirect to <redirect_target>?
response=<urlencoded_response_json> .
response
{

"success": true,
"total": 1,
"errors": O

errors

+ 233 (No data file) - if file part is missing.
+ 234 (Invalid data format).

- 247 (Entity already exists) - if uploaded place contains external_id and place with
this ID already exists and duplicate_policy=fail.

+ 268 (Over quota) - if the user's quota for places exceeded.

Last update: February 4, 2021

Changing place avatar

Avatars don't change through /place/update, you must use either assign (to set
avatar to one of preset icons), or upload (to upload your own image).

APl actions

APl path: /place/avatar.

upload

Uploads avatar image for specified place.
required sub-user rights: place_update.

Then it will be available from [api_base_url]/<api_static_uri>/place/avatars/
<file_name> e.g. https://api.navixy.com/v2/fsm/static/place/avatars/
abcdef123456789.png .

avatar_file_name returned in response and will be returned from place/list.

MUST be a POST multipart request (multipart/form-data), with one of the parts being an
image file upload (with the name "file").

File part mime type must be one of:
* image/jpeg or image/pjpeg
* image/png
* image/gif

PARAMETERS

description

place_id ID of the place. int

file Image file. File
upload

redirect_target Optional URL to redirect. If redirect_target passed string

return redirect to <redirect_target>?

response=<urlencoded_response_json> .

RESPONSE

"success": true,
"value": "Avatar file name"

+ value - string. Avatar file name.
errors

+ 201 (Not found in the database) — when place with place_id not found.
+ 233 (No data file) - if file part not passed.
+ 234 (Invalid data format) - if passed file with unexpected mime type.

-+ 254 (Cannot save file) — on some file system errors.

assign

Assigns icon_id (from standard icon set) to this place. icon_id can be null - this
means that uploaded avatar should be used instead of icon.

required sub-user rights: place_update.

parameters
name description type
place_id ID of the place. int
icon_id Optional. ID of the icon from standard icon set. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/place/avatar/assign' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "place_id":
122304, "icon_id": 1}'

HTTP GET
https://api.navixy.com/v2/fsm/place/avatar/assign?

hash=a6aa75587e5c59¢32d347da438505fc3&place_id=122304&icon_id=1

response

{ "success": true }

errors

+ 201 (Not found in the database) — when place with place_id not found.

Last update: November 16, 2020

Working with tasks

You can assign task to any tracked device. If specified tracker visits task checkpoint at
the specified time and meets other conditions such as filling form or staying in the task
zone for the specified time, the task completed. Otherwise, the task either failed
completely or completed with warnings.

If task assigned to a Mobile Tracker App (Android / i0S), it's available for viewing by app
user. User will also receive notifications of newly assigned tasks, task changes, etc.

Task object

"id": 111,
"user_id": 3,
"tracker_id": 22,
"location": {
"lat": 56.5,
"lng": 60.5,
"address": "Fichtenstrasse 11",
"radius": 150
b
"label": "Deliver parcels",
"description"”: "Quickly",
"creation_date": "2014-01-02 03:04:05",
"from": "2014-02-03 04:05:06",
"to": "2014-03-04 05:06:07",
"external_id": null,
"status": "assigned",
"status_change_date": "2014-01-02 ©3:04:05",
"max_delay" : 5,
"min_stay_duration": @,
"arrival_date": "2014-01-02 ©3:04:05",
"stay_duration": @,
"origin": "imported",
"tags": [1, 2],
"type": "task",
"form": <form_object>,

"fields": {
"131312" : {
"type": "text",
"value": "I love text!"
}

+ id -int. Primary key. Used in task/update, IGNORED in task/create.

« user_id -int. User id. IGNORED in create/update.

https://play.google.com/store/apps/details?id=com.navixy.xgps.tracker&hl=ru
https://apps.apple.com/us/app/x-gps-tracker/id802887190

* tracker_id -int. Anid of the tracker to which task assigned. Can be null. IGNORED
in task/update.

+ location -location associated with this task. Cannot be null.
+ address - string. Address of the location.
* radius - int. Radius of location zone in meters.
* creation_date - string date/time. When task created. IGNORED in create/update.
« from - string date/time. Date AFTER which task zone must be visited.
* to - string date/time. Date BEFORE which task zone must be visited.

« external_id - string. Used if task imported from external system. Arbitrary text
string. Can be null.

+ status - string enum. Task status. IGNORED in create/update. Can have
"unassigned" value (unassigned to any executor), "assigned", "done", "failed",
"delayed", "arrived" (arrived to geofence but haven't done the task), "faulty" (with
problems).

* status_change_date - string date/time. When task status changed. IGNORED in
create/update.

+ max_delay -int. Maximum allowed task completion delay in minutes.

* min_stay_duration -int. Minimum duration of stay in task zone for task
completion, minutes.

« arrival_date - string date/time. When tracker has arrived to the task zone.
IGNORED in create/update.

+ stay_duration -int. Duration of stay in the task zone, seconds.
* origin - string. Task origin. IGNORED in create/update.

* tags - array of int. List of tag ids.

« form - form object. If present.

« fields - optional object. A map, each key of which is a custom field id as a string.
See entity/fields

APl actions

API base path: /task.

assign
(Re)assigns task to new tracker (or make it unassigned).

required sub-user rights: task_update.

../../commons/entity/fields/

parameters

name description type
task_id Id of the task to assign. int
tracker_id Id of the tracker. Tracker must belong to authorized user and int

not be blocked. If null, task will be assigned to no one.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/assign' \

-H '"Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "task_id":
23144, "tracker_id": 132421}

HTTP GET

https://api.navixy.com/v2/fsm/task/assign?

hash=a6aa75587e5c59c32d347da438505fc3&task_id=23144&tracker_id=132421
response

{ "success": true }

errors

+ 201 - Not found in the database (if there is no task with such an id).

+ 204 - Entity not found (if there is no tracker with such id belonging to authorized
user).

+ 208 - Device blocked (if tracker exists but was blocked due to tariff restrictions or
some other reason).

+ 255 - Invalid task state (if current task state is not "unassigned" or "assigned").

+ 236 - Feature unavailable due to tariff restrictions (if device's tariff does not allow
usage of tasks).
batch_convert
Converts batch of tab-delimited tasks and return list of checked tasks with errors.

required sub-user rights: task_update .

parameters

name

batch

fields

geocoder

default_radius

default_max_delay

default_duration

default_min_stay_duration

location_check_mode

employee_ids

vehicle_ids

description

Batch of tab-delimited tasks.

Optional. Array of field names, default is
["label”, "from", "to", "address",

"lat", "lng", "description"].

Geocoder type.

Optional. Radius for point, default is 100.

Optional. Max delay for tasks, default is 0.

Optional. Duration for task in minutes,
default is 60.

Optional. Minimal stay duration for task in
minutes, default is 0.

Optional. One of "no_check",

"entity_location", "parent_location"

Optional. List of employee Ids to
automatic assign

Optional. List of vehicle Ids to automatic
assign

type

string

array of
string

string
enum

int

int

int

int

string

enum

array of
int

array of
int

In case of location_check_mode==entity_location — vehicle_ids will be ignored.

response
{
"success": true,
"list": [{
"id": 111,

"user_id": 3,

"tracker_id": 22,

"location": {
"lat": 56.5,

"lng": 60.5,
"address": "Fichtenstrasse 11",
"radius": 150

}

abel": "Deliver parcels",
"description”: "Quickly",
"creation_date": "2014-01-02 ©03:04:065",
"from": "2014-02-03 04:05:06",
"to": "2014-03-04 05:06:07",
"external_id": null,
"status": "assigned",
"status_change_date": "2014-01-02 ©03:04:05",
"max_delay" : 5,
"min_stay_duration": @,
"arrival_date": "2014-01-02 ©03:04:05",
"stay_duration": 0,
"origin": "imported",
"tags": [1, 2]
"type": "task",
"form": <form_object>,
"errors": [<error_object>]

H,

"limit_exceeded": false

« list - list of checked task objects that contain all fields from task and field

errors.
« errors - array of objects. Optional. List of errors.

« limit_exceeded - boolean. true if given batch constrained by a limit.
errors

General types only.

count
Returns total number of tasks belonging to current user.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/count' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET
https://api.navixy.com/v2/fsm/task/count?

hash=a6aa75587e5¢c59¢32d347da438505fc3

response

"success": true,
“count": 111

« count -int. Number of tasks.

Create
Creates a new task.

required sub-user rights: task_update .

parameters
name description type
task task object without fields which are IGNORED JSON
object
create_form If true then check additional form_template_id field boolean

in task object and create form if it is not null. Default
value is false for backward compatibility.

Minimal JSON object to create a new task must contain:

{
"tracker_id": 22,
"location": {
"lat": 56.83717295,
"lng": 60.59761920,
"radius": 150
b
"label": "Name",
"description": "Description example",
"from": "2020-02-03 04:05:06",
"to": "2020-03-04 05:06:07"
}

* tracker_id -int. Optional. if the field specified then the task will be assigned to
the employee associated with the tracker, otherwise it won't be assigned to
anybody.

+ location - area (circle geofence), entering and leaving of geofence will be
controlled.

+ lat - float. Latitude.

+ 1ng - float. Longitude.
+ radius -int. Radius in meters.
+ label - string. Task name, length 1-200 characters.
« description - string. Task description, length 0-1024 characters.

« from - string date/time. Start date of the interval - when the specified location has
to be visited (in the user's time zone).

* to - string date/time. End date of the interval - when the specified location has to
be visited (in the user's time zone).

example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/create’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b" "task":
{"tracker_id": 22, "location": {"lat": 56.83717295, "lng":
60.59761920, "radius": 150}, "label": "Name", "description":
"Description example", "from": "2020-02-083 04:05:06", "to"
"2020-03-04 05:06:07"}, "create_form": false}'

task/create call returns the identifier of the created task. A returned object also can
include "external_id_counts” field see task/route/create method description.

response
{
"success": true,
"id": 111,
"external_id_counts": [{

"external_id": "456",
"count": 2

3

« id -int. An id of the created task.

Note: The "id" parameter is unique, it is automatically generated by the server when you
create a task. Therefore, if you call task/create two times with the same parameters,
every time the new task will be created. These two tasks will differ only by an id.
Respectively, if the created task has to be connected to a certain record in external
system, you have to remember the id of this record to use it in future when you want to
change/delete the associated task in our system.

errors

+ 201 - Not found in the database (if task.tracker_id is not null and belongs to
nonexistent tracker).

- 236 — Feature unavailable due to tariff restrictions (if device's tariff does not allow
usage of tasks).
delete
Deletes the task with the specified id.

required sub-user rights: task_update .

parameters
name description type
task_id Id of the task to delete. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/delete’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d64da2celaf111b", "task_id"
23144}

HTTP GET

https://api.navixy.com/v2/fsm/task/delete?
hash=a6aa75587e5c59c32d347da438505fc3&task_id=23144

response
{ "success": true }

errors

+ 201 - Not found in the database (if there is no task with such an id).

list

Gets all task belonging to user with optional filtering.

parameters

name description

external_id Optional. External task ID for search.

statuses Optional. Default all. List of task statuses, e.g.
["unassigned", "failed"] .

trackers Optional. Ids of the trackers to which task
assigned.

from Optional. Show tasks which are actual AFTER
this date, e.g. "2020-07-01 00:00:00".

to Optional. Show tasks which are actual
BEFORE this date, e.g. "2020-07-01 00:00:00".

conditions Optional. Search conditions to apply to list.
Array of search conditions.

filter Optional. Filter for all built-in and custom
fields. If used with conditions, both filter and
conditions must match for every returned
task.

filters Optional. Filters for task label, description or
address.

tag_ids Optional. Tag IDs assigned to the task.

location Optional. Location with radius, inside which
task zone centers must reside. Example:
{ "lat": 56.823777, "lng": 60.594164,
"radius": 350 }

offset Optional. Offset from start of the found tasks
for pagination.

limit Optional. Limit of the found tasks for

pagination.

type

string

array of string

array of int

string date/time

string date/time

array of

SearchCondition

string

array of string

array of int

Location JSON

int

int

../../commons/entity/search_conditions/

CONDITION FIELDS

Type Comment

id number
employee number id
status string
label string
location string address
from string date/time?
to string date/time?
status_change_date string date/time?
arrival_date string date/time?
stay_duration Seconds
description string
external_id string?
form number template's id

If external_id, trackers, filters, from, to or tag_ids is not passed or null then appropriate
condition not used to filter results.

If offset or limit is null then restrictions for pagination will not be applied.
SORT: STRING[?

set of sort options. Each option is a pair of column name and sorting direction, e.g.

['label=acs", "address=desc", "employee=desc"].

SORT FIELDS

Type Comment

id number
employee string full name or tracker label
status string
label string
location string address
from string date/time?
to string date/time?
status_change_date string date/time?
arrival_date string date/time?
stay_duration Seconds
description string
external_id string?
form string label

If external_id, trackers, filters, from, to or tag_ids is not passed or null then appropriate
condition not used to filter results.

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/list"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/fsm/task/list?
hash=a6aa75587e5c59¢c32d347da438505fc3

response

{
"success": true,
"list": [{
"id": 111,
"user_id": 3,
"tracker_id": 22,
"location": {
"lat": 56.5,
"lng": 60.5,
"address": "Schulhof 2, Wien, Austria",
"radius": 150
b
"label": "Name",
"description"”: "Description example",
"creation_date": "2014-01-02 ©03:04:05",
"from": "2020-02-03 04:05:06",
"to": "2020-03-04 05:06:07",
"external_id": "©1234567",
"status": "assigned",
"status_change_date": "2020-01-02 ©03:04:05",
"max_delay": 5,
"min_stay_duration": @,
"arrival_date": "2020-01-02 ©03:04:05",
"stay_duration": 10,
"origin": "manual",
"type": "task"
L
“count": 1
}

« list - array of task objects.
* id -int. Task id.
« user_id -int. User id (office). An unchangeable parameter.

* tracker_id -int. Tracker ID. Indicator ID by which the implementation of this
task will be controlled.

+ location - area (circle geofence), entering and leaving of geofence will be
controlled.

* label - string. Task name, length 1-200 characters.
* description - string. Task description, length 0-1024 characters.

+ creation_date - string date/time. Date of creation of a task, unchangeable
field.

« from - string date/time. Start date of the interval - when the specified location
has to be visited (in the user's time zone).

* to - string date/time. End date of the interval - when the specified location has
to be visited (in the user's time zone).

« external_id - string. Text field for tracking of communication of the task with
certain external systems (for example, number of the order). Is for reference
only.

+ status - string enum. Current status of a task, can have "unassigned" value

(unassigned to any executor), "assigned", "done", "failed", "delayed", "arrived"
(arrived to geofence but haven't done the task), "faulty” (with problems).

+ status_change_date - string date/time. Date of the last change of the status of
a task.

« max_delay -int. The maximum time delay of the execution of the task, in
minutes.

* min_stay_duration -int. The minimum stay time in the area of the task in
which the task has to be done, in minutes.

« arrival_date - string date/time. Date and time of arrival in the area of the
task. Can be null. If the executor has not visited it yet.

* stay_duration -int. Number of seconds spent inside task zone.

* origin - string enum. The way of creation of a task. Can be "manual”,
"scheduled" or "imported" (from excel).

* type - string. Reserved.

« count -int. count of the all found tasks.
errors

General types only.

read
Gets task, checkpoint, or route with checkpoints by specified id.

parameters

description

task_id Id of the task, route or checkpoint. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/read' \

-H 'Content-Type: application/json' \

-d "{"hash": "22eac1c27af4be7b9d0@4da2celaf111b", "task_id":
23144}
HTTP GET
https://api.navixy.com/v2/fsm/task/read?
hash=a6aa75587e5¢c59¢32d347da438505fc3&task_id=23144

response

"success": true,
"value": <task, checkpoint or route>,
"checkpoints": [

<checkpoint1>,

<checkpoint2>

+ value - JSON object. task described here.

+ checkpoints - only returned if entity with specified id is a route. Contains all
checkpoints of this route. checkpoint object described here.

errors

+ 201 - Not found in the database (if there is no task with such an id).

transmute
Converts task into a route checkpoint.

required sub-user rights: task_update .

parameters
name description type
task_id Id of the task to convert. int
route_id Id of the route to attach to. int

order int

name description type

Zero-based index at which checkpoint should be inserted into
route.

examples

cURL
curl -X POST 'https://api.navixy.com/v2/fsm/task/transmute' \
-H '"Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "task_id":
23144, "route_id": 12334, "order": 0}'
HTTP GET
https://api.navixy.com/v2/fsm/task/transmute?
hash=a6aa75587e5c59¢c32d347da438505fc3&task_id=23144&route_id=12334&ord
response

{ "success": true }

errors

+ 201 - Not found in the database (if there is no task or route with such an id, or
tracker to which checkpoint assigned is unavailable to current sub-user).

+ 255 - Invalid task state (if task or any of the checkpoints are not in unassigned or
assigned state).
update
Updates existing task. Note that you cannot change task owner using this method.

required sub-user rights: task_update .

parameters
name description type
task task object without fields which are IGNORED. JSON
object
create_form If true then check additional form_template_id field boolean

in task object and create, replace or delete task's

name description type

form. Default value is false for backward
compatibility.

example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/update’ \

-H '"Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b" "task": {"id"
22379, "location": {"lat": 56.83717295, "lng": 60.59761920,
"radius": 150}, "label": "Name", "description": "Description
example", "from": "2020-02-03 04:05:06", "to": "2020-03-04
05:06:07"}, "create_form": false}'

A returned object also can include "external_id_counts" field see task/route/create
method description.

response

"success": true,

"external_id_counts": [{
"external_id": "456",
"count": 2

}H

errors

+ 201 - Not found in the database (if there is no task with such an id).

+ 255 - Invalid task state (if current task state is not "unassigned" or "assigned").

Last update: December 17, 2020

Routes

Routes basically named and ordered set of checkpoints. Each checkpoint is essentially
a task with an additional link to the parent route.

Route completed if all the checkpoints completed and visited in the specified order.
Otherwise, it is considered completed with warnings or failed.

Route object

"id": 111,

"user_id": 3,

"tracker_id": 222653,

"label": "Deliver parcels",
"description”: "Quickly",
"creation_date": "2014-01-02 03:04:05",
"from": "2014-02-03 04:05:06",

"to": "2014-03-04 05:06:07",
"external_id": null,

"status": "assigned",
"status_change_date": "2014-01-02 ©3:04:05",
"origin": "imported",

"tags": [1, 2],

"checkpoint_ids": [2977,2978],

"type": "route"

+ id -int. Primary key used in route/update, IGNORED in route/create.
« user_id -int. User id. IGNORED in route/create and route/update.

* tracker_id -int. Anid of the tracker to which route assigned. Can be null.
IGNORED in route/update.

* creation_date - string date/time. When route created. IGNORED in route/create,
route/update.

« from - string date/time. Date AFTER which first checkpoint zone must be visited,
depends on first checkpoint from, IGNORED in route/create, route/update.

* to - string date/time. Date BEFORE which last checkpoint zone must be visited,
depends on last checkpoint to, IGNORED in route/create, route/update.

« external_id - string. Used if route imported from external system. arbitrary text
string. Can be null.

* status - string. A route status. IGNORED in route/create, route/update.

* status_change_date - string date/time. When route status changed. IGNORED in
route/create, route/update.

+ origin - string. A route origin. IGNORED in route/create, route/update.
* tags - array of int. List of tag ids.

+ checkpoint_ids - array of int. List of route checkpoint ids in order of execution.
IGNORED in route/create.

APl actions

API base path: /task/route

assign
(Re)assign route to new tracker (or make it unassigned).

required sub-user rights: task_update .

parameters
name description type
route_id ID of the route to assign. int
tracker_id ID of the tracker. Tracker must belong to authorized user and int
not be blocked. If null, task will be assigned to none.
examples
cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/route/assign' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "route_id":
11231, "tracker_id": 223465}

HTTP GET

https://api.navixy.com/v2/fsm/task/route/assign?
hash=a6aa75587e5c59¢32d347da438505fc3&route_id=11231&tracker_id=223465

response

"success": true

errors

+ 201 - Not found in the database (if there is no task with such an id).

+ 204 - Entity not found (if there is no tracker with such id belonging to authorized
user).

- 208 — Device blocked (if tracker exists but was blocked due to tariff restrictions or
some other reason).

+ 255 - Invalid task state (if current task state is not "unassigned" or "assigned").

+ 236 - Feature unavailable due to tariff restrictions (if device's tariff does not allow
usage of tasks).
create

Creates new route. One of checkpoints can have id (in this case it must be a task) - it
will be transmuted from task to checkpoint.

required sub-user rights: task_update .

parameters

description type
route Route object without fields which are IGNORED. JSON
object
checkpoints Checkpoints array of checkpoints object without array of
fields which are IGNORED. JSON
objects
create_form If true then check additional form_template_id field boolean

in every checkpoint object and create form if it is not
null. Default value is false for backward
compatibility.

Minimal route object to create a new route must contain:

{

"tracker_id": 223652,

"label": "Name",

"description": "Description example"

}

Also, need checkpoints list in order of execution, checkpoints from and to must be
agreed with each other i.e. checkpoint to cannot be before 'from' of preceding items.

"tracker_id": 223652,
"location": {
"lat": 56.83717295,
"lng": 60.59761920,
"radius": 150

"label"”: "Name",

"description": "Description example",
"from": "2014-02-03 04:05:06",

"to": "2014-03-04 05:06:07"

* tracker_id - int. Optional. If the field specified then the task will be assigned to
the employee associated with the tracker, otherwise it won't be assigned to
anybody.

+ location - area (circle geofence), entering and leaving of geofence will be
controlled.

+ lat - float. Latitude.
* 1ng - float. Longitude.
* radius -int. Radius in meters.
+ label - string. Task name, length 1-200 characters.
+ description - string. Task description, length 0-1024 characters.

« from - string date/time. Start date of the interval - when the specified location has
to be visited (in the user's time zone).

* to - string date/time. End date of the interval - when the specified location has to
be visited (in the user's time zone).

example

cURL

curl -X POST 'https://api.navixy.com/v2/fsm/task/route/create’' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "tracker_id":
223652, "label": "Name", "description": "Description example",
"checkpoints": [{"tracker_id": 223652, "location": { "lat":
56.83717295, "lng": 60.59761920, "radius": 150}, "label": "Name",
"description”: "Description example", "from": "2014-02-03
04:05:06", "to": "2014-03-04 05:06:07"}], "create_form": false}'

response

Call returns JSON object of the created route. In response there will be external ids
which have count greater than zero. There can be multiple external ids in response
because you can specify different external ids in a task's checkpoint. If there is nothing
to return, then parameter "external_id_counts" will not be present in response.

"success": true,

"result": {
“id": 111,
"user_id": 3,
"tracker_id": 22,
"